(經(jīng)典回放)已知函數(shù)f(x)=sin(ωxφ)(ω>0,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于點(diǎn)M(,0)對稱,且在區(qū)間[0,]上單調(diào)函數(shù),求φω的值.

答案:
解析:

  解:由f(x)是偶函數(shù),得f(-x)=f(x)即sin(-ωxφ)sin(ωxφ)

  ∴-cosφsinωxcosφsinωx對任意x都成立.且ω<0.

  得cosφ=0.依題設(shè)0≤φ≤π,解得φ

  由f(x)的圖象關(guān)于點(diǎn)M對稱得f(-x)=-f(+x).

  取x=0,得f()=-f(),∴f()=0.

  ∵f()=sin()=cos3ω,∴cos3ω=0.

  又∵ω<0,得+kπ,k∈Z

  ∴ω(2k+1),k∈Z

  當(dāng)k=0,時(shí),ω,f(x)=sin(x+).

  在[0,]上是減函數(shù).

  當(dāng)k=1時(shí),ω=2,f(x)=sin(2x+)在[0,]上是減函數(shù).

  當(dāng)k≥2時(shí),ω,y=f(x)在[0,]上不是單調(diào)函數(shù).

  綜上得ωω=2,φ


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)必修四數(shù)學(xué)蘇教版 蘇教版 題型:044

(經(jīng)典回放)已知函數(shù)f(x)=Asin(ωxφ)(A>0,ω>0,x∈R)在一個(gè)周期內(nèi)的圖象如下圖所示.求直線y=3與函數(shù)y=f(x)的所有交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-1-1蘇教版 蘇教版 題型:044

(經(jīng)典回放)已知c>0,設(shè)p:函數(shù)y=cxR上單調(diào)遞減.q:不等式x+|x-2c|>1的解集為R.如果p和q有且僅有一個(gè)正確,求c的取值范圍.

探究:q命題轉(zhuǎn)化為求函數(shù)y=x+|x-2c|的最小值問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:047

(經(jīng)典回放)已知函數(shù)f(x)=(a>1).

(1)證明:函數(shù)f(x)在(-1,+∞)上為增函數(shù);

(2)用反證法證明方程f(x)=0沒有負(fù)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-4-5人教A版 人教A版 題型:044

(經(jīng)典回放)已知函數(shù)φ(x)+1,f(x)=(a+b)x-ax-bx,其中a,b∈N+,a≠1,b≠1,a≠b,且ab=4,

(1)求函數(shù)φ(x)的反函數(shù)g(x);

(2)對任意n∈N+,試指出f(n)與g(2n)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案