17.已知向量$\overrightarrow m=(-1,2)$,向量$\overrightarrow n=(x,-1)$,若$\overrightarrow m∥\overrightarrow n$,則x=$\frac{1}{2}$.

分析 根據(jù)題意,由向量平行的坐標(biāo)表示方法,可得2x=(-1)×(-1),解可得x的值,即可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow m=(-1,2)$,向量$\overrightarrow n=(x,-1)$,
若$\overrightarrow m∥\overrightarrow n$,則有2x=(-1)×(-1),
解可得x=$\frac{1}{2}$;
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查向量平行的坐標(biāo)表示公式,關(guān)鍵是得到關(guān)于x的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高二(1)班n名學(xué)生視力情況進(jìn)行調(diào)查,得到如圖所的頻率分布直方圖,已知視力在4.0~4.4范圍內(nèi)的學(xué)生人數(shù)為24人,視力在5.0~5.2范圍內(nèi)為正常視力,視力在3.8~4.0范圍內(nèi)為嚴(yán)重近視.
(1)求a,n的值;
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)班級(jí)名次在前10名和后10名的學(xué)生進(jìn)行了調(diào)查,得到如表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?
(3)若先按照分層抽樣在正常視力和嚴(yán)重近視的學(xué)生中抽取6人進(jìn)一步調(diào)查他們用眼習(xí)慣,再?gòu)倪@6人中隨機(jī)抽取2人進(jìn)行保護(hù)視力重要性的宣傳,求視力正常人數(shù)ξ的分布列和期望.
是否近視/年級(jí)名次前10名后10名
近視97
不近視13
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等差數(shù)列{an}中,${a_2}=4,{a_5}=7,m,n∈{N^+}$,滿足$a_1^m+a_2^m+a_3^m+…+a_n^m=a_{n+1}^m$,則n等于( 。
A.1和2B.2和3C.3和4D.2和4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,拋物線${C_2}:{y^2}=4x$,C1與C2有公共的焦點(diǎn)F,C1與C2在第一象限的公共點(diǎn)為M,直線MF的傾斜角為θ,且$cosθ=\frac{1-2a}{3-2a}$,則關(guān)于雙曲線的離心率的說(shuō)法正確的是( 。
A.僅有兩個(gè)不同的離心率e1,e2且e1∈(1,2),e2∈(4,6)
B.僅有兩個(gè)不同的離心率e1,e2且e1∈(2,3),e2∈(4,6)
C.僅有一個(gè)離心率e且e∈(2,3)
D.僅有一個(gè)離心率e且e∈(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x∈z|0≤x<3},B={x∈R|x2≤9},則A∩B=( 。
A.{1,2}B.{0,1,2}C.{x|0≤x<3}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.指出下列命題的構(gòu)成形式,并寫(xiě)出構(gòu)成它的命題.
(1)36是6與18的倍數(shù);
(2)x=1不是方程x2+3x-4=0的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知α,β,γ∈(0,$\frac{π}{2}$),且tanα=2,tanβ=$\frac{2}{3}$,tanγ=$\frac{1}{8}$,求α+β-γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知樣本2,3,4,5,a的平均數(shù)是b,且點(diǎn)P(a-b,4b)在直線2x+y-8=0上,則該樣本的標(biāo)準(zhǔn)差是(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.非零實(shí)數(shù)a,b滿足tanx=x,且a2≠b2,則(a-b)sin(a+b)-(a+b)sin(a-b)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案