分析 (1)利用不等式的解集列出方程組求解即可.
(2)利用絕對值的幾何意義,求出函數(shù)的最小值,或通過分段函數(shù)求解最小值即可得到結(jié)果.
解答 解:(1)由題意可知|x-a|≤2,-2≤x-a≤2,解得a-2≤x≤a+2,…(2分)
∵不等式f(x)≤2的解集是{x|1≤x≤5},
∴$\left\{\begin{array}{l}a-2=1\\ a+2=5\end{array}\right.$解得a=3. …(5分)
(2)∵f(x)=|x-3|,
∴f(2x)+f(x+2)=|2x-3|+|x-1|…(6分)
=$|x-\frac{3}{2}|+|x-\frac{3}{2}|+|x-1|$$≥0+|(x-\frac{3}{2})-(x-1)|=\frac{1}{2}$,…(8分)
當(dāng)$x=\frac{3}{2}$時,${[{f(2x)+f(x+2)}]_{min}}=\frac{1}{2}$,
∴$m≤\frac{1}{2}$. …(10分)
或解$f(2x)+f(x+2)=\left\{\begin{array}{l}4-3x,x∈({-∞,1})\\ 2-x,x∈[{1,\frac{3}{2}}]\\ 3x-4,x∈({\frac{3}{2},+∞})\end{array}\right.$
當(dāng)$x=\frac{3}{2}$時,${[{f(2x)+f(x+2)}]_{min}}=\frac{1}{2}$,
∴$m≤\frac{1}{2}$.
點評 本題考查絕對值的幾何意義,函數(shù)的最值以及恒成立問題的轉(zhuǎn)化,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,-2] | B. | (-∞,1] | C. | [1,+∞) | D. | (-2,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | [-2,+∞) | C. | (-2,+∞) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{45}$ | B. | $\frac{1}{15}$ | C. | $\frac{2}{15}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com