已知
i
j
分別是方向與x軸正方向,y軸正方向相同的單位向量,設(shè)
a
=(x2+x+1)
i
-(x2-x+1)
j
,則向量
a
位于
 
考點(diǎn):向量的幾何表示
專題:平面向量及應(yīng)用
分析:由x2+x+1=(x+
1
2
2+
3
4
>0,x2-x+1=(x-
1
2
2+
3
4
>0,恒成立,故問(wèn)題得以解決.
解答: 解:∵x2+x+1=(x+
1
2
2+
3
4
>0,x2-x+1=(x-
1
2
2+
3
4
>0,
又∵
a
=(x2+x+1)
i
-(x2-x+1)
j
,
∴向量
a
位于第四象限,
故答案為:第四象限,
點(diǎn)評(píng):本題考查了復(fù)數(shù)的幾何意義、點(diǎn)在象限的特點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線為l點(diǎn)p是拋物線上第一象限內(nèi)的一點(diǎn),PA⊥l,垂足為A,若|PF|=2p,則直線PF的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-1≤x<3},B={x|x≤5},求A∩B和A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式x2-4ax+3a2<0(其中a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論:
①已知命題:p:存在x∈R,tanx=1;,命題q:任意x∈R,x2-x+1>0,則命題“p∧¬q”是假命題;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3;
③若sin(α+β)=
1
2
,sin(α-β)=
1
3
,則tanα=5tanβ;
④圓x2+y2+4x-2y+1=0與直線y=
1
2
x,所得弦長(zhǎng)為2.
其中正確命題序號(hào)為
 
(把你認(rèn)為正確的命題序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間兩條不同直線m、n和兩個(gè)不同平面a、β,則α丄β的一個(gè)充分條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩塊斜邊長(zhǎng)為
2
的直角三角形拼在一起,若
AD
=x
AB
+y
AC
(x,y∈R),設(shè)點(diǎn)F(x,y),則點(diǎn)F的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+Φ),x∈R(其中A>0,ω>0,0<Φ<
π
2
)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為
π
2
,且圖象上的一個(gè)最低點(diǎn)為M(
3
,-2).
(1)求f(x)的解析式;
(2)當(dāng)x∈[
π
12
,
π
2
]時(shí),求f(x)的值域.
(3)當(dāng)x取何值是能使f(x)取得最大值?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
不共線,且
a
b
≠0,向量
c
=
a
b
a
a
a
-
b
,則向量
a
c
的夾角為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案