【題目】前些年有些地方由于受到提高的影響,部分企業(yè)只重視經(jīng)濟(jì)效益而沒有樹立環(huán)保意識,把大量的污染物排放到空中與地下,嚴(yán)重影響了人們的正常生活,為此政府進(jìn)行強(qiáng)制整治,對不合格企業(yè)進(jìn)行關(guān)閉、整頓,另一方面進(jìn)行大量的綠化來凈化和吸附污染物.通過幾年的整治,環(huán)境明顯得到好轉(zhuǎn),針對政府這一行為,老百姓大大點贊.
(1)某機(jī)構(gòu)隨機(jī)訪問50名居民,這50名居民對政府的評分(滿分100分)如下表:
分?jǐn)?shù) | ||||||
頻數(shù) | 2 | 3 | 11 | 14 | 11 | 9 |
請在答題卡上作出居民對政府的評分頻率分布直方圖:
(2)當(dāng)?shù)丨h(huán)保部門隨機(jī)抽測了2018年11月的空氣質(zhì)量指數(shù),其數(shù)據(jù)如下表:
空氣質(zhì)量指數(shù)() | 0-50 | 50-100 | 100-150 | 150-200 |
天數(shù) | 2 | 18 | 8 | 2 |
用空氣質(zhì)量指數(shù)的平均值作為該月空氣質(zhì)量指數(shù)級別,求出該月空氣質(zhì)量指數(shù)級別為第幾級?(同一組數(shù)據(jù)用該組數(shù)據(jù)的區(qū)間中點值作代表,將頻率視為概率)(相關(guān)知識參見附表)
(3)空氣受到污染,呼吸系統(tǒng)等疾病患者最易感染,根據(jù)歷史經(jīng)驗,凡遇到空氣輕度污染,小李每天會服用有關(guān)藥品,花費(fèi)50元,遇到中度污染每天服藥的費(fèi)用達(dá)到100元.環(huán)境整治前的2015年11月份小李因受到空氣污染患呼吸系統(tǒng)等疾病花費(fèi)了5000元,試估計2018年11月份(參考(2)中表格數(shù)據(jù))小李比以前少花了多少錢的醫(yī)藥費(fèi)?
附:
空氣質(zhì)量指數(shù)() | 0-50 | 50-100 | 100-150 | 150-200 | 200-300 | |
空氣質(zhì)量指數(shù)級別 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
空氣質(zhì)量指數(shù) | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
【答案】(1)見解析(2)指數(shù)為第Ⅱ級,屬于良(3)相比2015年11月份,小李少花費(fèi)了4400元的醫(yī)藥費(fèi)
【解析】
(1)由題可計算出頻率/組距的值分別為0.008,0.012,0.044,0.056,0.044,0.036,然后畫圖。
(2)由題計算得該月空氣質(zhì)量指數(shù)平均值為,)指數(shù)為第Ⅱ級,屬于良
(3)2018年11月份輕度污染有8天,中度污染有2天,則可計算該月的藥費(fèi),從而得到答案。
解:(1)由評分表可知,相應(yīng)區(qū)間頻率/組距的值分別為0.008,0.012,0.044,0.056,0.044,0.036,其頻率分布直方圖如圖所示:
(2)由題得,該月空氣質(zhì)量指數(shù)平均值為
.
對照表格可知,該月空氣質(zhì)量指數(shù)為第Ⅱ級,屬于良.
(3)2018年11月份輕度污染有8天,中度污染有2天,
所以小李花費(fèi)的藥費(fèi)為元.
又元,
所以相比2015年11月份,小李少花費(fèi)了4400元的醫(yī)藥費(fèi).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一片產(chǎn)量很大的水果種植園,在臨近成熟時隨機(jī)摘下某品種水果100個,其質(zhì)量(均在l至11kg)頻數(shù)分布表如下(單位: kg):
分組 |
|
|
|
|
|
頻數(shù) | 10 | 15 | 45 | 20 | 10 |
以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.
(1)由種植經(jīng)驗認(rèn)為,種植園內(nèi)的水果質(zhì)量近似服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.請估算該種植園內(nèi)水果質(zhì)量在內(nèi)的百分比;
(2)現(xiàn)在從質(zhì)量為 的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機(jī)抽取3個.若水果質(zhì)量的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機(jī)抽取的3個水果總利潤為元,求的分布列及數(shù)學(xué)期望.
附: ,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,左、右焦點分別為,,右頂點為,上頂點為,為橢圓上在第一象限內(nèi)一點.
(1)若.
①求橢圓的離心率;
②求直線的斜率.
(2)若,,成等差數(shù)列,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正數(shù)的等比數(shù)列的公比,且,是方程的兩根,記的前n項和為.
(1)若,,依次成等差數(shù)列,求m的值;
(2)設(shè),數(shù)列的前n項和為,若,求n的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點為極點,軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線及圓的極坐標(biāo)方程;
(Ⅱ)若直線與圓交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左、右焦點分別為,,點為左支上任意一點,直線是雙曲線的一條漸近線,點在直線上的射影為,且當(dāng)取最小值5時,的最大值為( )
A. B. C. D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,拋物線:與直線:交于點,兩點,且.
(1)求拋物線的方程;
(2)線段的中點為,過點且斜率為的直線交拋物線于,兩點,若直線,分別與直線交于,兩點,當(dāng)時,求斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:,拋物線圖象上的一動點到直線與到軸距離之和的最小值為__________,到直線距離的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B,C,D是直角坐標(biāo)系中不同的四點,若,,且,則下列說法正確的是( ),
A.C可能是線段AB的中點
B.D可能是線段AB的中點
C.C、D可能同時在線段AB上
D.C、D不可能同時在線段AB的延長線上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com