12.在平面直角坐標系xOy中,拋物線y2=-2px(p>0)的焦點F與雙曲線x2-8y2=8的左焦點重合,點A在拋物線上,且|AF|=6,若P是拋物線準線上一動點,則|PO|+|PA|的最小值為( 。
A.3$\sqrt{5}$B.4$\sqrt{3}$C.3$\sqrt{7}$D.3$\sqrt{13}$

分析 求出雙曲線的左焦點得出拋物線的方程,解出A點坐標,取O關于準線的對稱點B,則|AB|為|PO|+|PA|的最小值.

解答 解:雙曲線的標準方程為$\frac{{x}^{2}}{8}-{y}^{2}=1$,∴雙曲線的左焦點為(-3,0),即F(-3,0).
∴拋物線的方程為y2=-12x,拋物線的準線方程為x=3,
∵|AF|=6,∴A到準線的距離為6,∴A點橫坐標為-3,不妨設A在第二象限,則A(-3,6).
設O關于拋物線的準線的對稱點為B(6,0),連結AB,則|PO|=|PB|,
∴|PO|+|PA|的最小值為|AB|.
由勾股定理得|AB|=$\sqrt{A{F}^{2}+B{F}^{2}}$=$\sqrt{117}$=3$\sqrt{13}$.
故選:D.

點評 本題考查了拋物線,雙曲線的性質(zhì),屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=$\sqrt{x-2}$+(x-4)0的定義域為(  )
A.{x|x>2,x≠4}B.[2,4)∪(4,+∞)C.{x|x≥2,或x≠4}D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.復數(shù)i2(1+i)的實部是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示,已知拋物線C:y2=2px(p>0)的焦點為F,過點F垂直于x軸的直線與拋物線C相交于A,B兩點,拋物線C在A,B兩點處的切線及直線AB所圍成的三角形面積為4.
(1)求拋物線C的方程;
(2)設M,N是拋物線C上異于原點O的兩個動點,且滿足kOM•kON=kOA•kOB,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知點A、F分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點和左焦點,若AF與圓O:x2+y2=4相切于點T,且點T是線段AF靠近點A的三等分點,則橢圓C的標準方程為$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{6}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設α,β為兩個不重合的平面,m,n是兩條不重合的直線,α⊥β,α∩β=m,則以下說法正確的是(  )
A.若m⊥n,則n⊥βB.若m⊥n,n?α,則n⊥βC.若m∥n,則n∥βD.若m∥n,則n⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知實數(shù)a,b滿足|a+b|≤2,求證:|a2+2a-b2+2b |≤4(|a|+2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.從1到9這9個數(shù)字中任取3個偶數(shù)和3個奇數(shù),組成無重復數(shù)字的六位數(shù),
(Ⅰ)有多少個偶數(shù)?
(Ⅱ)若奇數(shù)排在一起且偶數(shù)排在一起,這樣的六位數(shù)有多少個?
(Ⅲ)若三個偶數(shù)不能相鄰,這樣的六位數(shù)有多少個?
(IV)若三個偶數(shù)從左到右的排練順序必須由大到小,這樣的六位數(shù)有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=2ex+2ax-a2,a∈R.
(1)當a=1時,求f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若x≥0時,f(x)≥x2-3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案