【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點P的極坐標為,直線l的極坐標方程為.
(1)求直線l的直角坐標方程與曲線C的普通方程;
(2)若Q是曲線C上的動點,M為線段PQ的中點,直線l上有兩點A,B,始終滿足|AB|=4,求△MAB面積的最大值與最小值.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是正方形,PA⊥平面ABCD,E,F分別是線段AD,PB的中點,PA=AB=1.
(1)證明:EF∥平面PDC;
(2)求點F到平面PDC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),曲線上的點對應(yīng)的參數(shù).在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.射線與曲線交于點.
(1)求曲線的直角坐標方程;
(2)若點,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知在四棱錐S﹣AFCD中,平面SCD⊥平面AFCD,∠DAF=∠ADC=90°,AD=1,AF=2DC=4,,B,E分別為AF,SA的中點.
(1)求證:平面BDE∥平面SCF
(2)求二面角A﹣SC﹣B的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}滿足:a3+a8=20,且a5是a2與a14的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù),設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,若對任意的,均有,求的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間為函數(shù)的一個“可等域區(qū)間”.給出下列四個函數(shù):
①;
②;
③;
④.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左右焦點分別為,,左頂點為,點在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)過原點且與軸不重合的直線交橢圓于,兩點,直線分別與軸交于點,,.求證:以為直徑的圓恒過交點,,并求出面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線方程為,求的值;
(2)在(1)的條件下,求函數(shù)零點的個數(shù);
(3)若不等式對任意都成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com