20.“a>1“是“$\frac{1}{a}$<1“的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.非充分非必要條件

分析 根據(jù)不等式的關(guān)系結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:當(dāng)a>1時(shí),$\frac{1}{a}$<1成立,即充分性成立,
當(dāng)a=-1時(shí),滿足$\frac{1}{a}$<1,但a>1不成立,即必要性不成立,
則“a>1“是“$\frac{1}{a}$<1“的充分不必要條件,
故選:A

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.前不久,我市各街頭開始出現(xiàn)“高庶葫蘆島”共享單車,滿足了市民的出行需要和節(jié)能環(huán)保的要求,解決了最后一公里的出行難題,市運(yùn)營(yíng)中心為了對(duì)共享單車進(jìn)行更好的監(jiān)管,隨機(jī)抽取了20位市民對(duì)共享單車的情況進(jìn)行了問卷調(diào)查,并根據(jù)其滿足度評(píng)分值制作了莖葉圖如下:

(1)分別計(jì)算男性打分的中位數(shù)和女性打分的平均數(shù);
(2)從打分在80分以下(不含80分)的市民中抽取3人,求有女性被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某廠每日生產(chǎn)一種大型產(chǎn)品2件,每件產(chǎn)品的投入成本為1000元.產(chǎn)品質(zhì)量為一等品的概率為0.5,二等品的概率為0.4,每件一等品的出廠價(jià)為5000元,每件二等品的出廠價(jià)為4000元,若產(chǎn)品質(zhì)量不能達(dá)到一等品或二等品,除成本不能收回外,每生產(chǎn)1件產(chǎn)品還會(huì)帶來1000元的損失.
(Ⅰ)求在連續(xù)生產(chǎn)的3天中,恰有兩天生產(chǎn)的2件產(chǎn)品都為一等品的概率;
(Ⅱ)已知該廠某日生產(chǎn)的這種大型產(chǎn)品2件中有1件為一等品,求另1件也為一等品的概率;
(Ⅲ)求該廠每日生產(chǎn)這種產(chǎn)品所獲利潤(rùn)ξ(元)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在一次贈(zèng)書活動(dòng)中,將2本不同的小說與2本不同的詩(shī)集贈(zèng)給2名學(xué)生,每名學(xué)生2本書,則每人分別得到1本小說與1本詩(shī)集的概率為( 。
A.$\frac{1}{5}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合S={x|$\frac{x-3}{x-6}$≤0,x∈R},T={2,3,4,5,6},則S∩T={3,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若數(shù)列{an}滿足a1=12,a1+2a2+3a3+…+nan=n2an,則a2017=$\frac{12}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}的前n項(xiàng)a1,a2,…,an(n∈N*)組成集合An={a1,a2,…,an},從集合An中任取k(k=1,2,3,…,n)個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為Tk(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),例如:對(duì)于數(shù)列{2n-1},當(dāng)n=1時(shí),A1={1},T1=1;n=2時(shí),A2={1,3},T1=1+3,T2=1•3;
(1)若集合An={1,3,5,…,2n-1},求當(dāng)n=3時(shí),T1,T2,T3的值;
(2)若集合An={1,3,7,…,2n-1},證明:n=k時(shí)集合Ak的Tm與n=k+1時(shí)集合Ak+1的Tm(為了以示區(qū)別,用Tm′表示)有關(guān)系式Tm′=(2k+1-1)Tm-1+Tm,其中m,k∈N*,2≤m≤k;
(3)對(duì)于(2)中集合An.定義Sn=T1+T2+…+Tn,求Sn(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{1}{3}$ax3+ax2+x+1有極值的充要條件是a<0或a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某班主任對(duì)全班50名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,在學(xué)習(xí)積極性高的25名學(xué)生中有7名不太主動(dòng)參加班級(jí)工作,而在積極參加班級(jí)工作的24名學(xué)生中有6名學(xué)生學(xué)習(xí)積極性一般.
(1)填寫下面列聯(lián)表;
積極參加班級(jí)工作不太主動(dòng)參加班級(jí)工作合計(jì)
學(xué)習(xí)積極性高
學(xué)習(xí)積極性一般
合計(jì)
(2)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(3)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:能否在犯錯(cuò)誤概率不超過0.001的前提下認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系.
(觀測(cè)值表如下)
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊(cè)答案