函數(shù)f(x)=
x
2
+cosx,x∈[0,
π
2
]的最大值是( 。
A、1
B、
π
4
C、
π
12
+
3
2
D、
π
6
+
1
2
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)數(shù),利用導(dǎo)數(shù)求得函數(shù)在定義域內(nèi)的極值,可判斷該極值即為函數(shù)的最值.
解答: 解:f′(x)=
1
2
-sinx,
令f′(x)=0,得x=
π
6
,
當0≤x<
π
6
時,f′(x)>0,f(x)遞增;
π
6
<x
π
2
時,f′(x)<0,f(x)遞減;
∴當x=
π
6
時,f(x)取得極大值,也是最大值,
即f(
π
6
)=
π
12
+
3
2
,
故選C.
點評:本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,屬中檔題,運用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、最值問題要熟練掌握.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知cos(15°+α)=
3
5
,α為銳角,求:
tαn(435°-α)+sin(α-165°)
cos(195°+α)×sin(105°+α)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
2
sin2x+
3
cos2x+2006的周期是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0的兩側(cè),且a>0且a≠1,b>0,則
b
a-1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在RT△ABC中,∠C=90°,AC=b,BC=a(a<b﹚,分別繞BC,AC,AB旋轉(zhuǎn)三角形得三個旋轉(zhuǎn)體,其體積Va,Vb,Vc的大小順序是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,則其外接球的表面積是( 。
A、25π
B、50π
C、
125
2
3
π
D、
50
2
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某圓臺的上、下底面半徑分別為2和8,且該圓臺的母線長為10,則圓臺的體積為( 。
A、223πB、224π
C、168πD、169π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

y=x2+3x+5,x∈[-2 4],求y的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:y=x+a(a≠0)和曲線C:y=x3-x2+1相切,求a的值.

查看答案和解析>>

同步練習冊答案