【題目】設(shè)是數(shù)列的前項(xiàng)和,已知 .

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)令,數(shù)列的前項(xiàng)和為,求.

【答案】(Ⅰ) ;(Ⅱ) .

【解析】試題分析:(),得,兩式相減,化簡(jiǎn)可得,根據(jù)等比數(shù)列的通項(xiàng)公式可數(shù)列的通項(xiàng)公式;(由(Ⅰ)得 利用裂項(xiàng)相消法即可求得數(shù)列的前項(xiàng)和為,從而可得.

試題解析:(Ⅰ)當(dāng)時(shí),由,得,

兩式相減,得 ,

, .

當(dāng)時(shí), ,則.

數(shù)列是以為首項(xiàng), 為公比的等比數(shù)列.

(Ⅱ)由(Ⅰ)得 .

.

【方法點(diǎn)晴】本題主要考查等比數(shù)列的通項(xiàng)以及裂項(xiàng)相消法求數(shù)列的和,屬于中檔題. 裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項(xiàng)技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.

(1)若函數(shù)上的極小值不大于,求的取值范圍;

(2)設(shè),證明: 上的最小值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元2222年,有一種高危傳染病在全球范圍內(nèi)蔓延,被感染者的潛伏期可以長(zhǎng)達(dá)10年,期間會(huì)有約0.05%的概率傳染給他人,一旦發(fā)病三天內(nèi)即死亡,某城市總?cè)丝诩s200萬(wàn)人,專家分析其中約有1000名傳染者,為了防止疾病繼續(xù)擴(kuò)散,疾病預(yù)防控制中心現(xiàn)決定對(duì)全市人口進(jìn)行血液檢測(cè)以篩選出被感染者,由于檢測(cè)試劑十分昂貴且數(shù)量有限,需要將血樣混合后一起檢測(cè)以節(jié)約試劑,已知感染者的檢測(cè)結(jié)果為陽(yáng)性,末被感染者為陰性,另外檢測(cè)結(jié)果為陽(yáng)性的血樣與檢測(cè)結(jié)果為陰性的血樣混合后檢測(cè)結(jié)果為陽(yáng)性,同一檢測(cè)結(jié)果的血樣混合后結(jié)果不發(fā)生改變.

1)若對(duì)全市人口進(jìn)行平均分組,同一分組的血樣將被混合到一起檢測(cè),若發(fā)現(xiàn)結(jié)果為陽(yáng)性, 則再在該分組內(nèi)逐個(gè)檢測(cè)排査,設(shè)每個(gè)組個(gè)人,那么最壞情況下,需要進(jìn)行多少次檢測(cè)可以找到所有的被感染者?在當(dāng)前方案下,若要使檢測(cè)的次數(shù)盡可能少,每個(gè)分組的最優(yōu)人數(shù)?

2)在(1)的檢測(cè)方案中,對(duì)于檢測(cè)結(jié)果為陽(yáng)性的組來(lái)取逐一檢測(cè)排査的方法并不是很好, 或可將這些組的血樣再進(jìn)行一次分組混合血樣檢測(cè),然后再進(jìn)行逐一排査,仍然考慮最壞的情況,請(qǐng)問(wèn)兩次要如何分組,使檢測(cè)總次數(shù)盡可能少?

3)在(2)的檢測(cè)方案中,進(jìn)行了兩次分組混合血樣檢測(cè),仍然考慮最壞情況,若再進(jìn)行若干次分組混合血樣檢測(cè),是否會(huì)使檢測(cè)次數(shù)更少?請(qǐng)給出最優(yōu)的檢測(cè)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不是直角三角形,它的三個(gè)角所對(duì)的邊分別為已知.

1求證: ;

2如果,面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為25cm的正方形中挖去邊長(zhǎng)為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問(wèn)粒子落在中間帶形區(qū)域的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:

求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補(bǔ)全這個(gè)頻

率分布直方圖;

統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)

值作為代表,據(jù)此估計(jì)本次考試的平均分;

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2個(gè),求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱柱中, 分別為的中點(diǎn),設(shè).

(1)求證:平面平面;

(2)若二面角的平面角為,求實(shí)數(shù)的值,并判斷此時(shí)二面角是否為直二面角,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案