設(shè)數(shù)列的前項(xiàng)和為,且 .
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.
(1)。2).
解析試題分析:(1)當(dāng)時(shí),. 1分
當(dāng)時(shí),
. 3分
∵不適合上式,
∴ 4分
(2)證明: ∵.
當(dāng)時(shí),
當(dāng)時(shí),, ①
. ②
①-②得:
得, 8分
此式當(dāng)時(shí)也適合.
∴N.
∵,
∴. 10分
當(dāng)時(shí),,
∴. 12分
∵,
∴.
故,即.
綜上,. 14分
考點(diǎn):本題主要考查數(shù)列的概念,等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),“錯(cuò)位相減法”,“放縮法”證明不等式。
點(diǎn)評(píng):中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),本解答從確定通項(xiàng)公式入手,明確了所研究數(shù)列的特征!胺纸M求和法”、“錯(cuò)位相消法”、“裂項(xiàng)相消法”是高考常?嫉綌(shù)列求和方法。先求和,再利用“放縮法”證明不等式,是常用方法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,對(duì)于任意,等式:恒成立,其中常數(shù).
(1)求的值;
(2)求證:數(shù)列為等比數(shù)列;
(3)如果關(guān)于的不等式的解集為,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若等比數(shù)列為 ()階“期待數(shù)列”,求公比;
(2)若一個(gè)等差數(shù)列既是 ()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記階“期待數(shù)列”的前項(xiàng)和為:
(。┣笞C:;
(ⅱ)若存在使,試問數(shù)列能否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,a1=1,點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求證:<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,若對(duì)于任意的正整數(shù)都有,
(1)設(shè),求證:數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}滿足=1,=,(1)計(jì)算,,的值;(2)歸納推測(cè),并用數(shù)學(xué)歸納法證明你的推測(cè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),為正整數(shù).
(Ⅰ)求和的值;
(Ⅱ)數(shù)列的通項(xiàng)公式為(),求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè)數(shù)列滿足:,,設(shè),若(Ⅱ)中的滿足:對(duì)任意不小于3的正整數(shù)n,恒成立,試求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)正項(xiàng)數(shù)列都是等差數(shù)列,且公差相等,(1)求的通項(xiàng)公式;(2)若的前三項(xiàng),記數(shù)列數(shù)列的前n項(xiàng)和為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
已知有窮數(shù)列共有項(xiàng)(整數(shù)),首項(xiàng),設(shè)該數(shù)列的前項(xiàng)和為,且其中常數(shù)⑴求的通項(xiàng)公式;⑵若,數(shù)列滿足
求證:;
⑶若⑵中數(shù)列滿足不等式:,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com