【題目】在區(qū)間D上,若函數(shù)y=f(x)為增函數(shù),而函數(shù) 為減函數(shù),則稱函數(shù)y=f(x)為區(qū)間D上的“弱增”函數(shù).則下列函數(shù)中,在區(qū)間[1,2]上不是“弱增”函數(shù)的為(
A.
B.
C.g(x)=x2+1
D.g(x)=x2+4

【答案】C
【解析】解:A.g(x)= 在[1,2]上為增函數(shù);
在[1,2]上為減函數(shù);
∴g(x)在[1,2]上為“弱增”函數(shù);
B. 在[1,2]上為增函數(shù);
,x增大時, 增大, 減小,∴ 增大;
減。
在[1,2]上為減函數(shù);
∴g(x)在[1,2]上為“弱增”函數(shù);
C.g(x)=x2+1在[1,2]上為增函數(shù);
在[1,2]上為增函數(shù);
∴g(x)在區(qū)間[1,2]上不是“弱增”函數(shù),即該選項正確;
D.g(x)=x2+4在[1,2]上為增函數(shù);
, ;
∵x∈[1,2];
∴y′≤0;
在[1,2]上單調(diào)遞減;
∴g(x)在[1,2]上為“弱增”函數(shù).
故選C.
【考點精析】關(guān)于本題考查的函數(shù)單調(diào)性的判斷方法,需要了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐S﹣ABC中,SO⊥平面ABC,側(cè)面SAB與SAC均為等邊三角形,∠BAC=90°,O為BC的中點,求二面角A﹣SC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:方程 表示焦點在y軸上的橢圓,命題q:關(guān)于x的方程x2+2mx+2m+3=0無實根,若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水是地球上寶貴的資源,由于價格比較便宜在很多不缺水的城市居民經(jīng)常無節(jié)制的使用水資源造成嚴重的資源浪費.某市政府為了提倡低碳環(huán)保的生活理念鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,…,分成9組,制成了如圖所示的頻率分布直方圖.

(1)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計全市有多少居民?并說明理由;

(2)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎,設(shè)為用水量噸數(shù)在中的獲獎的家庭數(shù),為用水量噸數(shù)在中的獲獎家庭數(shù),記隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=x2﹣3x﹣4的定義域為[0,m],值域為 ,則m的取值范圍是(
A.(0,4]
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .

(Ⅰ)寫出的值,并用列舉法寫出集合;

(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;

(Ⅲ)有多少個集合對,滿足,且?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的離心率為 ,右焦點與拋物線y2=4x的焦點F重合.
(1)求橢圓的方程;
(2)過F的直線l交橢圓于A、B兩點,橢圓的左焦點力F',求△AF'B的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設(shè)該廠用所有原來編制個花籃, 個花盆.

(Ⅰ)列出滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數(shù),可使得所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點的個數(shù);
(2)設(shè)g(x)=﹣ ,若不等式f(x)>g(x)對任意x∈[1,e]恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案