考察下列一組不等式:將上述不等式在左右兩端仍為兩項(xiàng)和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式為   ___。

 

解析:仔細(xì)觀察左右兩邊式子結(jié)構(gòu)的特點(diǎn)、指數(shù)的聯(lián)系,便可得到。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

考察下列一組不等式:
23+5322×5+2×52
24+5423×5+2×53
2
5
2
+5
5
2
22×5
1
2
+2
1
2
×52
,將上述不等式在左右兩端視為兩項(xiàng)和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

考察下列一組不等式:
精英家教網(wǎng)
將上述不等式在左右兩端仍為兩項(xiàng)和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

考察下列一組不等式:23+53>22•5+2•52,24+54>23•5+2•53,25+55>23•52+22•53,….將上述不等式在左右兩端仍為兩項(xiàng)和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式可以是
2n+5n>2n-k5k+2k5n-k,n≥3,1≤k≤n
2n+5n>2n-k5k+2k5n-k,n≥3,1≤k≤n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(3)(解析版) 題型:解答題

考察下列一組不等式:23+53>22•5+2•52,24+54>23•5+2•53,25+55>23•52+22•53,….將上述不等式在左右兩端仍為兩項(xiàng)和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式可以是   

查看答案和解析>>

同步練習(xí)冊(cè)答案