設(shè)數(shù)列{an}為前n項和為Sn,,數(shù)列{ Sn +2}是以2為公比的等比數(shù)列.

(1)求;

(2)抽去數(shù)列{an}中的第1項,第4項,第7項,……,第3n-2項,余下的項順序不變,組成一個新數(shù)列{cn},若{cn}的前n項和為Tn,求證:

<≤

 

【答案】

  解:(1)由題意得:,,(1分)         

已知數(shù)列{ Sn +2}是以4為首項,2為公比的等比數(shù)列

所以有:,    (4分)

時,,又   (6分)

所以:    (7分)

(2)由(1) 知:,

∴數(shù)列{cn}為22,23,25,26,28,29,……,它的奇數(shù)項組成以4為首項,公比為8的等比數(shù)列;偶數(shù)項組成以8為首項、公比為8的等比數(shù)列;(8分)

∴當 n=2k-1(k∈N*)時,

Tn=(c1+ c3+…+c2k-1)+ (c2+ c4+…+ c2k-2)

=(22+25+…+23k-1)+( 23+26+…+23k-3)

=+=×8k-,(11分)

Tn+1= Tn+cn+1=×8k-+23k = ×8k-,(10分)

 =  = +,

∵ 5×8k-12≥28,∴<≤3。(11分)

∴當n=2k (k∈N*)時,

Tn=(c1+ c3+…+c2k-1)+ (c2+ c4+…+ c2k)

=(22+25+…+23k-1)+( 23+26+…+23k)

     =+=×8k-,(12分)

Tn+1= Tn+cn+1=×8k-+23k+2  = ×8k-,(13分)

      ∴  =  = +,∵8k-1≥7 ,∴<<,

∴<≤。(14分)

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}為前n項和為Sn,a1=2,數(shù)列{ Sn+2}是以2為公比的等比數(shù)列.
(1)求an;
(2)抽去數(shù)列{an}中的第1項,第4項,第7項,…,第3n-2項,余下的項順序不變,組成一個新數(shù)列{cn},若{cn}的前n項和為Tn,求證:
12
5
Tn+1
Tn
11
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆廣東省珠海市高三5月綜合測試(二)理科數(shù)學(xué)試題 題型:解答題

設(shè)數(shù)列{an}為前n項和為Sn,,數(shù)列{ Sn +2}是以2為公比的等比數(shù)列.
(1)求;
(2)抽去數(shù)列{an}中的第1項,第4項,第7項,……,第3n-2項,余下的項順序不變,組成一個新數(shù)列{cn},若{cn}的前n項和為Tn,求證:
<≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

設(shè)數(shù)列{an}為前n項和為Sn,,數(shù)列{ Sn +2}是以2為公比的等比數(shù)列.

(1)求;

(2)抽去數(shù)列{an}中的第1項,第4項,第7項,……,第3n-2項,余下的項順序不變,組成一個新數(shù)列{cn},若{cn}的前n項和為Tn,求證:

<≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省珠海市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)數(shù)列{an}為前n項和為Sn,a1=2,數(shù)列{ Sn+2}是以2為公比的等比數(shù)列.
(1)求an;
(2)抽去數(shù)列{an}中的第1項,第4項,第7項,…,第3n-2項,余下的項順序不變,組成一個新數(shù)列{cn},若{cn}的前n項和為Tn,求證:

查看答案和解析>>

同步練習(xí)冊答案