【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.

(1)求的值;

(2)分別求出甲、乙兩組數(shù)據(jù)的方差,并由此分析兩組技工的加工水平;

【答案】(1);(2),乙組加工水平高。

【解析】

1)根據(jù)甲、乙兩組數(shù)據(jù)的平均數(shù)都是并結(jié)合平均數(shù)公式可求出、的值;

2)利用方差公式求出甲、乙兩組數(shù)據(jù)的方差,根據(jù)方差大小來對甲、乙兩組技工的加工水平高低作判斷。

1)由于甲組數(shù)據(jù)的平均數(shù)為,即,解得,

同理,,解得

2)甲組的個數(shù)據(jù)分別為:、、,

由方差公式得

乙組的個數(shù)據(jù)分別為:、、、、,

由方差公式得,

,因此,乙組技工的技工的加工水平高。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】城市公交車的數(shù)量太多造成資源的浪費(fèi),太少又難以滿足乘客需求,為此,某市公交公司在某站臺的60名候車乘客中隨機(jī)抽取15名,將他們的候車時間(單位:分鐘)作為樣本分成5組,如下表所示:

組別

候車時間

人數(shù)

[0,5)

2

[5,10)

6

[10,15)

4

[15,20)

2

[20,25]

1

(1)求這15名乘客的平均候車時間

(2)估計這60名乘客候車時間少于10分鐘的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

按此規(guī)律,第個等式可為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程:為參數(shù)),曲線的參數(shù)方程:為參數(shù)),且直線交曲線,兩點.

(Ⅰ)將曲線的參數(shù)方程化為普通方程,并求時,的長度;

(Ⅱ) 已知點,求當(dāng)直線傾斜角變化時,的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的部分圖象.

1)求函數(shù)的表達(dá)式;

2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和;

3)把函數(shù)的圖象的周期擴(kuò)大為原來的兩倍,然后向右平移個單位,再把縱坐標(biāo)伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)的圖象.若對任意的,方程在區(qū)間上至多有一個解,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右頂點A(2,0),且過點
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點,直線AE,AF分別交直線x=3于M,N兩點,線段MN的中點為P,記直線PB的斜率為k2 , 求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.

(1)設(shè)總造價(元)表示為長度的函數(shù);

(2)當(dāng)取何值時,總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):

單價

9

9.2

9.4

9.6

9.8

10

銷量

100

94

93

90

85

78

(1)若銷量與單價服從線性相關(guān)關(guān)系,求該回歸方程;

(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價,可使工廠獲得最大利潤。

附:對于一組數(shù)據(jù),,……

其回歸直線的斜率的最小二乘估計值為;

本題參考數(shù)值:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.

查看答案和解析>>

同步練習(xí)冊答案