【題目】已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長為2的正方形.

1)求橢圓的方程;

(2)設(shè)是橢圓上一點(diǎn),為橢圓長軸上一點(diǎn),求的最大值與最小值;

(3)設(shè)是橢圓外的動(dòng)點(diǎn),滿足,點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)在線段上,并且滿足,,求點(diǎn)的軌跡方程.

【答案】(Ⅱ)當(dāng)時(shí),,當(dāng)時(shí).(Ⅲ)

【解析】試題分析:(1)運(yùn)用正方形的性質(zhì)可得 ,求得,進(jìn)而得到橢圓方程;(2)設(shè) 是橢圓上一點(diǎn),則 ,運(yùn)用兩點(diǎn)的距離公式和二次函數(shù)的最值求法,即可得到所求最值;

3)通過連接 ,連接 利用橢圓定義可知 進(jìn)而為線段的中點(diǎn),利用三角形中位線定理可知 ,進(jìn)而可得軌跡方程.

試題解析:()由題意得

所以橢圓的方程為:

)設(shè),因?yàn)?/span>是橢圓上一點(diǎn),所以

因?yàn)?/span>

所以當(dāng)時(shí),,

當(dāng)時(shí)

)設(shè)點(diǎn)的坐標(biāo)為

當(dāng)時(shí),點(diǎn)和點(diǎn) 在軌跡上.

當(dāng)時(shí),由,得

,

所以,所以為線段的中點(diǎn).

中,,所以有

綜上所述,點(diǎn)的軌跡方程

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與市場預(yù)測,知A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2.(注:所示圖中的橫坐標(biāo)表示投資金額,單位:萬元)

1 2

1)分別將AB兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;

2)該企業(yè)已籌集10萬元資金,并全部投入AB兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)的一種藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測,服藥后每毫升中的含藥量(微克)與時(shí)間(小時(shí))之間近似滿足如圖所示的曲線.(當(dāng)時(shí), .

1)寫出第一次服藥后之間的函數(shù)關(guān)系式;

2)據(jù)進(jìn)一步測定,每毫升血液中含藥量不少于微克時(shí),治療疾病有效,求服藥一次后治療疾病有效時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程的根的個(gè)數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)頂點(diǎn)分別為,焦點(diǎn)在軸上,離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)點(diǎn)軸上一點(diǎn),過軸的垂線交橢圓于不同的兩點(diǎn),過的垂線交于點(diǎn).求的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證:

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上的動(dòng)點(diǎn)滿足到點(diǎn)的距離比到直線的距離小1.

(1)求曲線的方程;

(2)動(dòng)點(diǎn)在直線上,過點(diǎn)分別作曲線的切線,切點(diǎn)為.直線是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出四種說法:

①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;

②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p

④回歸直線一定過樣本點(diǎn)的中心( ).

其中正確的說法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD和正方形ABEF的邊長都是1,并且平面ABCD⊥平面ABEF,點(diǎn)MAC上移動(dòng),點(diǎn)NBF上移動(dòng).若|CM||BN|a(0a )

(1)MN的長度;

(2)當(dāng)a為何值時(shí),MN的長度最短.

查看答案和解析>>

同步練習(xí)冊答案