18.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m⊥n,m⊥α,則n∥α;
③若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.
④若m∥α,α⊥β,則m⊥β.
其中真命題的個數(shù)是2.

分析 ①根據(jù)面面垂直的判定定理進行判斷即可,
②根據(jù)線面平行的性質(zhì)以及線面垂直的性質(zhì)進行判斷,
③根據(jù)線面平行的判定定理進行判斷,
④根據(jù)線面平行,面面垂直的判定定理進行判斷.

解答 解:①根據(jù)面面垂直的定義知若一個平面內(nèi)有一條直線和平面垂直,則兩個平面垂直,即若m⊥α,m?β,則α⊥β成立;故①正確,
②若m⊥n,m⊥α,則n∥α或n?α;故②錯誤,
③若α∩β=m,n∥m且n?α,n?β,則n∥α且n∥β此命題正確,因為由線面平行的判定定理知,面外一條直線與面內(nèi)一條直線平行,可得此線與面平行.故③正確,
④若m∥α,α⊥β,則m⊥β或m∥β或m?β或m與β相交.故④錯誤,
故正確的是①③,
故答案為:2

點評 本題主要考查命題的真假判斷,涉及空間直線和平面,平面和平面平行或垂直的判定,根據(jù)相應(yīng)的判定定理和性質(zhì)定理是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值為1,則a的取值范圍是( 。
A.$[\frac{1}{2},1)$B.(0,1)C.$(0,\frac{1}{2}]$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.數(shù)列{an}是等差數(shù)列,a1=1,an=-512,Sn=-1022,求公差d及n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在平面直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-k}\\{y=3-2k}{\;}\end{array}\right.$(k為參數(shù)),以原點O為極點,以x軸正半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.圓C的極坐標方程為ρ=2sinθ.
(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)設(shè)圓C與直線l交于點A,B,若點M的坐標為(2,3).求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.y=cosxB.y=e-xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.根據(jù)如圖所示的程序語句,若輸入的x值為3,則輸出的y值為( 。
A.2B.3C.6D.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.直線l與圓x2+y2+2x-4y+a=0(a<3)交于A,B兩點,且弦AB的中點為(0,1),則直線l的方程是( 。
A.y=-2x+1B.y=2x+1C.y=-x+1D.y=x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表,y=f'(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:
x-1045
f(x)1221
①函數(shù)f(x)的值域為[0,2];
②函數(shù)f(x)在區(qū)間[0,2]和[4,5]上是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數(shù)y=f(x)-a有4個零點.
其中是真命題的是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知復(fù)數(shù)z滿足(1-2i)z=|1+2i|•(1-i),則復(fù)數(shù)z的虛部為(  )
A.-$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$iC.$\frac{\sqrt{5}}{5}$D.-i

查看答案和解析>>

同步練習冊答案