【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)若直線與曲線交于兩點,且設定點,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]:在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線,的直角坐標方程;
(2)判斷曲線,是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位為了響應疫情期間有序復工復產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在“員工甲不是第一個檢測,員工乙不是最后一個檢測”的條件下,員工丙第一個檢測的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,地到火車站共有兩條路徑,據(jù)統(tǒng)計兩條路徑所用的時間互不影響,所用時間在各時間段內(nèi)的的頻率如下表:
時間(分鐘) | |||||
的頻率 | |||||
的頻率 |
現(xiàn)甲、乙兩人分別有分鐘和分鐘時間用于趕往火車站.
(1)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應如何選擇各自的路徑?
(2)用表示甲、乙兩人中在允許的時間內(nèi)趕到火車站的人數(shù),針對(1)的選擇方案,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考改革后,國家只統(tǒng)一考試數(shù)學和語文,英語學科改為參加等級考試,每年考兩次,分別放在每個學年的上、下學期,物理、化學、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?/span>.考生從中選擇三科成績,參加大學相關院系的錄取.
(1)若英語等級考試成績有一次為優(yōu),即可達到某211院校的錄取要求.假設某個學生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學期的英語等級考試成績才為優(yōu)的概率;
(2)據(jù)預測,要想報考該211院校的相關院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設該生在省會考六科的成績,考到90分以上概率都是,設該生在省會考時考到90分以上的科目數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在研究吸煙與患肺癌的關系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關”的結論,并且在犯錯誤的概率不超過0.01的前提下認為這個結論是成立的,下列說法中正確的是( )
A.100個吸煙者中至少有99人患有肺癌
B.1個人吸煙,那么這個人有99%的概率患有肺癌
C.在100個吸煙者中一定有患肺癌的人
D.在100個吸煙者中可能一個患肺癌的人也沒有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中,說法正確的是( )
A.命題“,”的否定為“,”;
B.命題“在中,,則”的逆否命題為真命題;
C.已知、m是兩條不同的直線,是個平面,若,則;
D.已知定義在R上的函數(shù),則“為奇函數(shù)”是“”的充分必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題,其中正確的命題有( )
A.設具有相關關系的兩個變量x,y的相關系數(shù)為r,則越接近于0,x,y之間的線性相關程度越高
B.隨機變量,若,則
C.公共汽車上有10位乘客,沿途5個車站,乘客下車的可能方式有種
D.回歸方程為中,變量y與x具有正的線性相關關系,變量x增加1個單位時,y平均增加0.85個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com