3.記復(fù)數(shù)z=a+bi(i為虛數(shù)單位)的共軛復(fù)數(shù)為$\overline z=a-bi(a,b∈R)$,已知z=2+i,則$\overline{z^2}$=3-4i.

分析 由已知z求出z2,再由共軛復(fù)數(shù)的概念得答案.

解答 解:∵z=2+i,
∴z2=(2+i)2=3+4i,則$\overline{{z}^{2}}=3-4i$.
故答案為:3-4i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}-2x,x<0\\-{x^2}+2x,x≥0\end{array}\right.$若關(guān)于x的方程$f(x)=\frac{1}{2}x+m$恰有三個(gè)不相等的實(shí)數(shù)解,則m的取值范圍是(  )
A.$[{0,\frac{3}{4}}]$B.$(0,\frac{3}{4})$C.$[{0,\frac{9}{16}}]$D.$(0,\frac{9}{16})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|1<x<4},B={x|m+1<x<3m-1},R=(-∞,+∞)
(1)當(dāng)m=2時(shí),求A∪B,A∩B,∁RB;
(2)若B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.總體由編號(hào)為00,01,02,…48,49的50個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取8個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第6行的第9列和第10列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第8個(gè)個(gè)體的編號(hào)為(  )
附:第6行至第9行的隨機(jī)數(shù)表:
A.16B.19C.20D.38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)x1=17,x2=18,x3=19,x4=20,x5=21,將這五個(gè)數(shù)據(jù)依次輸入下面程序框圖進(jìn)行計(jì)算,則輸出的S值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.5名學(xué)生進(jìn)行知識(shí)競賽,筆試結(jié)束后,甲、乙兩名參賽者去詢問成績,回答者對(duì)甲說:“你們5人的成績互不相同,很遺憾,你的成績不是最好的”;對(duì)乙說:“你不是最后一名”.根據(jù)以上信息,這5個(gè)人的筆試名次的所有可能的種數(shù)是(  )
A.54B.72C.78D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在的直線方程為2x-y-5=0,AC邊上的高BH所在的直線方程為x-2y-5=0.求
(Ⅰ)AC所在的直線方程;
(Ⅱ)點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知角α的終邊經(jīng)過點(diǎn)P(2,m)(m>0),且cosα=$\frac{2\sqrt{5}}{5}$,則m=1.

查看答案和解析>>

同步練習(xí)冊答案