【題目】《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻).若從八卦中任取兩卦,這兩卦的六個爻中恰有一個陽爻的概率為( )
A.B.
C.D.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設橢圓的上、下頂點分別為, 點是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,若四邊形的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,將曲線繞極點逆時針旋轉(zhuǎn)后得到曲線.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線:與,分別相交于異于極點的,兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lg(x+1).
(1)若0<f(1-2x)-f(x)<1,求實數(shù)x的取值范圍;
(2)若g(x)是以2為周期的偶函數(shù),且當0≤x≤1時,有g(x)=f(x),當x∈[1,2]時,求函數(shù)y=g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學家謝賓斯基在1915年提出,先作一個正三角形挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第4個大正三角形中隨機撒512粒大小均勻的細小顆粒物,則落在白色區(qū)域的細小顆粒物的數(shù)量約是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓上頂點為A,右焦點為F,直線與圓相切,其中.
(1)求橢圓的方程;
(2)不過點A的動直線l與橢圓C相交于P,Q兩點,且,證明:動直線l過定點,并且求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地一條主于道上有46盞路燈,相鄰兩盞路燈之間間隔30米,有關部門想在所有相鄰路燈間都新添一盞,假設工人每次在兩盞燈之間添新路燈是隨機,并且每次添新路燈相互獨立.新添路燈與左右相鄰路燈的間隔都不小于10米是符合要求的,記符合要求的新添路燈數(shù)量為,則( )
A.30B.15C.10D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為研究某種圖書每冊的成本費y(單位:元)與印刷數(shù)量x(單位:千冊)的關系,收集了一些數(shù)據(jù)并進行了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.
表中,
(1)根據(jù)散點圖判斷:與哪一個模型更適合作為該圖書每冊的成本費y與印刷數(shù)量x的回歸方程?(只要求給出判斷,不必說明理由)
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程(結果精確到0.01);
(3)若該圖書每冊的定價為9.22元,則至少應該印刷多少冊才能使銷售利潤不低于80000元?(假設能夠全部售出,結果精確到1)
附:對于一組數(shù)據(jù)(ω1,v1),(ω2,v2),…,(ωn,vn),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com