設(shè)f(x)為R上的偶函數(shù),在區(qū)間(-∞,0)上遞增,且有f(2a2+a+1)<f(3a2-2a+1),求a的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、設(shè)F(x)的定義域?yàn)镽,且滿足F(ab)=F(a)F(b),其中F(2)=8.定義在R上的函數(shù)f(x)滿足下述條件:①f(x)是奇函數(shù);②f(x+2)是偶函數(shù);③在[-2,2]上,f(x)=F(x)
(1)設(shè)G(x)=f(x+4),判斷G(x)的奇偶性并證明;(2)解關(guān)于x的不等式:f(x)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)設(shè)f(x)=2cos2x+
3
sin2x
,g(x)=
1
2
f(x+
12
)+ax+b
,其中a,b為非零實(shí)常數(shù).
(1)若f(x)=1-
3
,x∈[-
π
3
,
π
3
]
,求x;
(2)若x∈R,試討論函數(shù)g(x)的奇偶性,并證明你的結(jié)論;
(3)已知:對(duì)于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),當(dāng)且僅當(dāng)x1=x2時(shí),等號(hào)成立.若a≥2,求證:函數(shù)g(x)在R上是遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:
①對(duì)任意的實(shí)數(shù)x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y);
②f(1)=2;
③f(x)在[0,1]上為增函數(shù).
(Ⅰ)求f(0)及f(-1)的值;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ)(說明:請(qǐng)?jiān)冢á。ⅲáⅲ﹩栔羞x擇一問解答即可.)
(。┰O(shè)a,b,c為周長(zhǎng)不超過2的三角形三邊的長(zhǎng),求證:f(a),f(b),f(c)也是某個(gè)三角形三邊的長(zhǎng);
(ⅱ)解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=lg
1-x
1+x
.判斷函數(shù)f(x)的奇偶性,并加以證明.
(2)設(shè)函數(shù)f(x)=1-
2
2x+1
.證明函數(shù)f(x)為R上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省莘縣實(shí)驗(yàn)高中2011屆高三上學(xué)期第一次階段性測(cè)試?yán)砜茢?shù)學(xué)試題 題型:044

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.

(Ⅰ)討論f(x)的奇偶性;

(Ⅱ)求f(x)在[a,+∞)上的最小值.

(Ⅲ)求f(x)在R上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案