設(shè)x≥-1,比較x3與x2+x-1的大。
考點:不等式比較大小
專題:不等式的解法及應(yīng)用
分析:直接作差,然后,變形整理,判斷符號即可.
解答: 解:∵x3-(x2+x-1)
=x3-x2-x+1
=x2(x-1)-(x-1)
=(x-1)2(x+1),
∵x≥-1,
∴(x-1)2(x+1)≥0,
∴x3≥x2+x-1.
點評:本題重點考查了作差比較法在比較不等式中的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}共有奇數(shù)項,所有奇數(shù)項和S=255,所有偶數(shù)項和S=-126,末項是192,則首項a1=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)m(x)=log4(4x+1),n(x)=kx(k∈R)
(1)當(dāng)x>0時,F(xiàn)(x)=m(x),且F(x)為R上的奇函數(shù),求x<0時F(x)的表達式;
(2)若f(x)=m(x)+n(x)為偶函數(shù),求k的值;
(3)對(2)中的函數(shù)f(x),設(shè)g(x)=log4(2x-
4
3
a),若函數(shù)f(x)與g(x)的圖象有公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4,直線l的參數(shù)方程為
x=a-2t
y=-4t
(t為參數(shù))
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(1,7sinα),且0<β<α<
π
2
.若
a
b
=
13
14
a
c
,
(1)求tanβ的值;
(2)求cos(2α-
1
2
β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3x-3-x=
8
9
,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2+sinx,1),
b
=(2,-1),
c
=(sinx-3,1),
d
=(1,k),(x∈R,k∈R).
(Ⅰ)若
a
與(
b
+
c
)共線,求sinx的值.
(Ⅱ)若k的值使(
a
+
d
)⊥(
b
+
c
),試求k的取值范圍.
(Ⅲ)若x∈[0,
π
2
],將函數(shù)y=
a
b
的圖象縱坐標(biāo)不變橫坐標(biāo)縮短為原來的
1
2
后,再向左平移
π
8
個單位得到函數(shù)f(x)的圖象,試求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點為F1(0,-
5
),F(xiàn)2(0,
5
)的雙曲線C在第一象限內(nèi)部分記為T,點Pn(n,yn)(n=1、2、…)在T上,Pn到直線l:y=2x+k的距離為dn,且
lim
n→∞
dn=
5

(1)設(shè)雙曲線半虛軸長為b,試用b表示dn;
(2)求雙曲線C的方程及k值;
(3)線段PnPn+1的垂直平分線與x軸交于點(xn,0)(n=1、2、…),試證{xn}成等差數(shù)列并求通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個數(shù)a=0.43,b=log30.4,c=30.4的大小關(guān)系是
 
(由大到小排列)

查看答案和解析>>

同步練習(xí)冊答案