【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若不過(guò)坐標(biāo)原點(diǎn)的直線與橢圓相交于、兩點(diǎn),且滿(mǎn)足,求面積最大時(shí)直線的方程.
【答案】(1);(2)
【解析】
(1)由題意列關(guān)于,,的方程組,求解,的值,則橢圓方程可求;
(2)由題意可知,直線的斜率存在,設(shè)直線的方程為,,,,,聯(lián)立直線方程與橢圓方程,化為關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系及向量等式可得值,寫(xiě)出三角形面積公式,得到關(guān)于的函數(shù)式,整理后利用基本不等式求最值,然后求得的方程.
(1)由題意得,解得,
所以橢圓的方程為;
(2)由題意可知,直線的斜率顯然存在,
設(shè)直線的方程為,,,
由得,
①
所以,所以,
因?yàn)?/span>,所以,
所以,代入①得且,
所以
,
當(dāng)且僅當(dāng),即時(shí)上式取等號(hào),此時(shí)符合題意,
所以直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)在開(kāi)學(xué)時(shí)舉行了入學(xué)檢測(cè).為了了解本年級(jí)學(xué)生寒假期間歷史的學(xué)習(xí)情況,現(xiàn)從年級(jí)名文科生中隨機(jī)抽取了名學(xué)生本次考試的歷史成績(jī),得到他們歷史分?jǐn)?shù)的頻率分布直方圖如圖.已知本次考試高三年級(jí)歷史成績(jī)分布區(qū)間為.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生歷史成績(jī)的平均分,眾數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點(diǎn)值作代表)
(3)已知該學(xué)校每年高考有%的同學(xué)歷史成績(jī)?cè)谝槐揪以上,用樣本估計(jì)總體的方法,請(qǐng)你估計(jì)本次入學(xué)檢測(cè)歷史學(xué)科劃定的一本線該為多少分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且Sn+2=2an,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn,設(shè)數(shù)列{bn}的前項(xiàng)和為Tn,若Tn,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫(xiě)有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說(shuō):“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說(shuō):“我與丙的卡片上相同的數(shù)字不是1”,丙說(shuō):“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)圖象上的各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,再向左平移個(gè)單位,得到的圖象,下列說(shuō)法正確的是( )
A.點(diǎn)是函數(shù)圖象的對(duì)稱(chēng)中心
B.函數(shù)在上單調(diào)遞減
C.函數(shù)的圖象與函數(shù)的圖象相同
D.若,是函數(shù)的零點(diǎn),則是的整數(shù)倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,為橢圓上任意一點(diǎn),且已知.
(1)若橢圓的短軸長(zhǎng)為,求的最大值;
(2)若直線交橢圓的另一個(gè)點(diǎn)為,直線交軸于點(diǎn),點(diǎn)關(guān)于直線對(duì)稱(chēng)點(diǎn)為,且,三點(diǎn)共線,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷(xiāo)售量(單位:)的影響.該公司對(duì)近5年的年宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)和年銷(xiāo)售量(單位:)具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
(萬(wàn)元) | 2 | 4 | 5 | 3 | 6 |
(單位:) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根據(jù)表中數(shù)據(jù)建立年銷(xiāo)售量關(guān)于年宣傳費(fèi)的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)與,的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問(wèn)題:
①當(dāng)年宣傳費(fèi)為10萬(wàn)元時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?
②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤(rùn)與年宣傳費(fèi)的比值最大.
附:?jiǎn)枤w方程中的斜率和截距的最小二乘估計(jì)公式分別為,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:
來(lái)源: 題型:【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).
(1)若過(guò)點(diǎn),且,求的斜率;
(2)若,且的斜率為,當(dāng)時(shí),求在軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長(zhǎng)為2的正方形,ACDGEF,且.
(1)證明:平面.
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com