20.已知雙曲線的方程$\frac{y^2}{2}-\frac{x^2}{8}=1$,則該雙曲線的離心率e等于( 。
A.5B.$\sqrt{5}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{5}{4}$

分析 根據(jù)題意,由雙曲線的方程可得a、b的值,計(jì)算可得c的值,進(jìn)而由雙曲線的離心率公式計(jì)算可得答案.

解答 解:根據(jù)題意,雙曲線的標(biāo)準(zhǔn)方程為$\frac{y^2}{2}-\frac{x^2}{8}=1$,
則a=$\sqrt{2}$,b=$\sqrt{8}$=2$\sqrt{2}$,
則c=$\sqrt{2+8}$=$\sqrt{10}$,
其離心率e=$\frac{c}{a}$=$\frac{\sqrt{10}}{\sqrt{2}}$=$\sqrt{5}$,
故選:B.

點(diǎn)評 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是熟悉雙曲線的標(biāo)準(zhǔn)方程的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\vec a,\vec b$滿足$|{\vec a+\vec b}|=\sqrt{6}$,$|{\vec a-\vec b}|=\sqrt{2}$,則$\vec a•\vec b$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將4位大學(xué)生分配到A,B,C三個工廠參加實(shí)習(xí)活動,其中A工廠只能安排1位大學(xué)生,其余工廠至少安排1位大學(xué)生,且甲同學(xué)不能分配到C工廠,則不同的分配方案種數(shù)是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,a1=1,S${\;}_{n}^{2}$=an(Sn-$\frac{1}{2}$)(n≥2).
(1)求{an}的通項(xiàng);
(2)設(shè)bn=$\frac{{S}_{n}}{2n+1}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在多項(xiàng)式(1+x+x2)(1-x)10的展開式中,x10項(xiàng)的系數(shù)是36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=-\frac{x^2}{2}+({a-1})x+({2-a})lnx+\frac{3}{2}({a<3})$.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某電腦公司有5名產(chǎn)品推銷員,其中工作年限與年推銷金額數(shù)據(jù)如下表:
推銷員編號12345
工作年限x(年)35679
推銷金額y(百萬元)23345
(1)請?jiān)谌鐖D中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)求年推銷金額y關(guān)于工作年限x的線性回歸方程;
(3)若某推銷員工作年限為11年,試估計(jì)他的年推銷金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若△ABC的對邊分別為a,b,c,且a=1,∠B=45°,s△ABC=2,則$\frac{sinB}$=(  )
A.5B.25C.$\sqrt{41}$D.5$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓C:x2+y2-4x-2y+1=0,直線l:3x-4y+m=0,圓上存在兩點(diǎn)到直線l的距離為1,則m的取值范圍是(-17,-7)∪(3,13).

查看答案和解析>>

同步練習(xí)冊答案