【題目】已知二次函數(shù)滿足以下兩個條件:①不等式的解集是②函數(shù)在上的最小值是3.
(Ⅰ)求的解析式;
(Ⅱ)若點在函數(shù)的圖象上,且.
(。┣笞C:數(shù)列為等比數(shù)列
(ⅱ)令,是否存在正實數(shù),使不等式對于一切的恒成立?若存在,指出的取值范圍;若不存在,請說明理由.
【答案】(Ⅰ);(Ⅱ)(。┳C明過程見解析;(ⅱ)
【解析】
(Ⅰ)根據(jù)不等式的解集可知函數(shù)與x軸的交點橫坐標為,0且開口向上,根據(jù)對稱軸判斷函數(shù)在上的最小值列出等式求解即可;(Ⅱ)(。c代入函數(shù)并整理得,同時取對數(shù)即可得證;(ⅱ)求出的通項公式代入不等式可得對于一切的恒成立,利用二次函數(shù)的圖象與性質(zhì)求出的最大值即可得解.
(Ⅰ)因為不等式的解集是,
所以設,且函數(shù)的對稱軸為:,
因為在上單調(diào)遞增,所以最小值為,解得,
函數(shù)解析式為;
(Ⅱ)(ⅰ)證明:因為點在函數(shù)的圖象上,
所以,則,,
因為,所以,
數(shù)列是以2為首項,2為公比的等比數(shù)列;
(ⅱ),要使不等式對于一切的恒成立,
則對于一切的恒成立,
所以對于一切的恒成立,
令,
令,則,(),,
所以當時, 不等式對于一切的恒成立.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù), ).
(1)求曲線的直角坐標方程和直線的普通方程;
(2)若曲線上的動點到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓的任意一條切線與橢圓E相交于P,Q兩點,試問: 是否為定值? 若是,求這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知射手甲射擊一次,命中9環(huán)(含9環(huán))以上的概率為0.56,命中8環(huán)的概率為0.22,命中7環(huán)的概率為0.12.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求甲射擊一次,命中不足8環(huán)的概率;
(2)求甲射擊一次,至少命中7環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為橢圓的右焦點, 為上的任意一點.
(1)求的取值范圍;
(2)是上異于的兩點,若直線與直線的斜率之積為,證明: 兩點的橫坐標之和為常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的圖像在點處的切線方程;
(2)當時,函數(shù)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com