20.某校有40個班,每班55人,每班選派3人參加“學(xué)代會”,這個問題中樣本容量是( 。
A.40B.50C.120D.155

分析 由題意,第班抽三人,四十個班共抽取120人,由此知樣本容量即為120,選出正確選項(xiàng)即可

解答 解:由題意,是一個分層抽樣,每個班中抽三人,總共是40個班,故共抽取120人組成樣本
所以,樣本容量是120人.
故選C

點(diǎn)評 本題考查分抽樣方法,求解本題的關(guān)鍵是了解分層抽樣的定義及其抽樣過程,由此得出樣本容量.基本概念考查題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是減函數(shù),則a的取值范圍是(  )
A.$(0,\frac{1}{2}]$B.(0,1)C.$(\frac{1}{2},1)$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y∈[0,π],則cos(x+y)+cosx+2cosy的最小值為-2.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解關(guān)于x的不等式ax2-(a+1)x+1>0(a為常數(shù)且a≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2sin$(ω\;x-\frac{π}{6}$)•cosω$x+\frac{1}{2}$(其中ω>0)的最小正周期為π.
(Ⅰ) 求ω的值;
(Ⅱ) 將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象.求函數(shù)g(x)在[-π,π]上零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow$=(cosx,1),令函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間.
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,f(A)=-1,a=$\sqrt{7}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,求邊b和c的值(b>c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在等比數(shù)列{an}中,a1,a4是方程x2-2x-3=0的兩根,則a2•a3=( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)f(x)=$\left\{{\begin{array}{l}{-2{e^{x-2}},x≥2}\\{{{log}_3}({{x^2}-1}),x<2}\end{array}}$,則f(f(2))的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從4,5,6,7,8這5個數(shù)中任取兩個數(shù),則所取兩個數(shù)之積能被3整除概率是( 。
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案