16.圓x2+y2-1=0上的點到直線x-y+$\sqrt{2}$=0的最大距離為2.

分析 找出圓心A的坐標,利用點到直線的距離加上半徑即可找出最大距離.

解答 解:圓x2+y2-1=0,所以圓心A坐標為(0,0),而直線x-y+$\sqrt{2}$=0的斜率為1,
所以(0,0)到直線的距離為:$\frac{|\sqrt{2}|}{\sqrt{1+!}}$=1,最大距離1+1=2.
故答案為:2.

點評 考查學生靈活運用點到直線的距離公式化簡求值,掌握圓的一些基本性質(zhì),是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.設x,y為實數(shù),若4x2+y2+xy=5,則2x+y的最大值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.求值:arcsin(-$\frac{{\sqrt{3}}}{2}$)=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若tanα=$\frac{1}{2}$,則$\frac{sinα-3cosα}{sina+cosα}$=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若非零向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow b$|=1,$\overrightarrow a$與$\overrightarrow b$-$\overrightarrow a$的夾角為120°,則|$\overrightarrow a$|的取值范圍是(0,$\frac{2\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下面沒有體對角線的一種幾何體是(  )
A.三棱柱B.四棱柱C.五棱柱D.六棱柱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖給出的是求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一個程序框圖,其中判斷框內(nèi)應填入的條件是①
①i>10?
②i<10?
③i>20?
④i<20?
⑤i=11?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列命題正確的是( 。
A.已知實數(shù)a,b,則“a>b”是“a2>b2”的必要不充分條件
B.“存在x0∈R,使得$x_0^2-1<0$”的否定是“對任意x∈R,均有x2-1>0”
C.函數(shù)$f(x)={x^{\frac{1}{3}}}-{(\frac{1}{2})^x}$的零點在區(qū)間$(\frac{1}{3},\frac{1}{2})$內(nèi)
D.設m,n是兩條直線,α,β是空間中兩個平面,若m?α,n?β,m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,過頂點在原點O,對稱軸為y軸的拋物線E上的定點A(2,1)作斜率分別為k1,k2的直線,分別交拋物線E于B,C兩點.
(1)求拋物線E的標準方程和準線方程;
(2)若k1+k2=k1k2,且△ABC的面積為8$\sqrt{5}$,求直線BC的方程.

查看答案和解析>>

同步練習冊答案