等差數(shù)列{an}滿足:a2+a9=a6,則a4=(  )
A、-2B、0C、1D、2
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列通項公式求解.
解答: 解:∵等差數(shù)列{an}滿足:a2+a9=a6
∴2a1+8d=a1+5d,
∴a1+3d=0,
∴a4=a1+3d=0.
故選:B.
點評:本題考查等差數(shù)列的第4項的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的通項公式的求法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足條件
x-y+1≥0
y+1≥0
x+2y+1≤0
,則3x+2y的最大值為( 。
A、1B、2C、3D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,x3<x4;命題q:?x∈R,sinx-cosx=-
2
.則下列命題中為真命題的是( 。
A、p∧qB、¬p∧q
C、p∧¬qD、¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=
-2x,x≤0
f(x-1),x>0
,若f(x)=x+a有且僅有三個解,則實數(shù)a的取值范圍( 。
A、[1,2]
B、(-∞,2)
C、[1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在R上的以3為周期的奇函數(shù)且f(2)=0在區(qū)間(0,6)內f(x)=0解個數(shù)的最小值是(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P為曲線y2=
3
4
x上任一點,F(xiàn)1(-5,0),F(xiàn)2(5,0),則下列命題正確的是( 。
A、||PF1|-|PF2||≥8
B、||PF1|-|PF2||≤8
C、||PF1|-|PF2||>8
D、||PF1|-|PF2||<8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知ABCD矩形中,AB=4,AD=3,在水平位置的平面α上畫出矩形ABCD的直觀圖A′B′C′D′,并使對角線AC平行于y軸,則A′B′C′D′的面積為(  )
A、12
B、6
2
C、6
D、3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 3月1日 3月2日 3月3日 3月4日 3月5日
溫差x(℃) 10 11 13 12 9
發(fā)芽數(shù)y(顆) 23 25 30 26 16
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于26”的概率;
(2)請根據(jù)3月1日至3月5日的數(shù)據(jù),求出y關于x的線性回歸方程.
(參考數(shù)據(jù):
.
x
=
1
5
(10+13+12+9)=11,
.
y
=
1
5
(23+25+30+26+16)=24)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某分公司經銷某種品牌產品,每件產品的成本為3元,并且每件產品需向總公司交3元的管理費,預計當每件產品的售價為x元(7≤x≤11)時,一年的銷售量為(12-x)2萬件.
(Ⅰ)求該分公司一年的利潤L(萬元)與每件產品的售價x的函數(shù)關系式;
(Ⅱ)當每件產品的售價為多少元時,該分公司一年的利潤L最大?并求出L的最大值.

查看答案和解析>>

同步練習冊答案