函數(shù)f(x)=x+e1-x的最小值等于
 
考點(diǎn):函數(shù)的最值及其幾何意義
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可求出函數(shù)的最小值.
解答: 解:∵f(x)=x+e1-x,
∴f′(x)=1-e1-x
∴x<1時(shí),f′(x)<0;x>1時(shí),f′(x)>0,
∴x=1時(shí),函數(shù)取得最小值2.
故答案為:2
點(diǎn)評(píng):本題考查函數(shù)的最小值,求導(dǎo)數(shù),確定函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x 
2
3
+3x2n的展開(kāi)式中,各項(xiàng)系數(shù)和比它的二項(xiàng)式系數(shù)和大992,求:
(1)展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義一種向量運(yùn)算“?”:
a
?
b
=
a•b,a,b不共線
a+b,a,b共線
a
,
b
是任意的兩上向量).若p=(1,-2),q=(-2,4),r=(3,4),則(p?q)?r=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,圓ρ=6cosθ+2
3
sinθ(ρ>0,0≤θ<2π),則圓心的極坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)為an=3n-2,則a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列四個(gè)命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若q≤1,則方程x2+2x+q=0有實(shí)根”的逆否命題;
④“等邊三角形的三個(gè)內(nèi)角相等”的否命題.
⑤“若a>b,則ac2>bc2”的逆命題
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一袋中裝有5個(gè)白球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)2次停止,用X表示取球的次數(shù),則P(X=3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式ax-b>0解集為(1,+∞),則關(guān)于x的不等式(ax+b)(x-1)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x2+2x,x≤0
lnx,x>0
,若不等式|f(x)|≥ax-1恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案