坐標(biāo)系與參數(shù)方程⊙O1和⊙O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ.

(Ⅰ)把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)求經(jīng)過(guò)⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.

答案:
解析:

  以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.

  (Ⅰ),由

  所以

  即的直角坐標(biāo)方程.

  同理的直角坐標(biāo)方程.

  (Ⅱ)由

  解得

  即交于點(diǎn).過(guò)交點(diǎn)的直線的直角坐標(biāo)方程為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
a,曲線C2的參數(shù)方程為
x=-1+cosφ
x=-1+sinφ
(φ為參數(shù),0≤φ≤π),
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C1與C2有兩個(gè)不同公共點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題包括A、B兩小題,考生都做.
A選修4-2:矩陣與變換
已知矩陣A=
ab
cd
,若矩陣A屬于特征值3的一個(gè)特征向量為α1=
1
1
,屬于特征值-1的一個(gè)特征向量為α2=
1
-1
,求矩陣A.
B選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系x0y中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox為極軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
π
4
)

(1)求直線l的傾斜角;
(2)若直線l與曲線l交于A、B兩點(diǎn),求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃州區(qū)模擬)(考生注意:本題為選做題,請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果都做,則按所做第(1)題計(jì)分)
(1)(《坐標(biāo)系與參數(shù)方程選講》選做題).已知曲線C的極坐標(biāo)方程為ρ=2cosθ,則曲線C上的點(diǎn)到直線
x=-1+t
y=2t
(t為參數(shù))距離的最大值為
1+
4
5
5
1+
4
5
5


(2)(《幾何證明選講》選做題).已知點(diǎn)C在圓O的直徑BE的延長(zhǎng)線上,直線CA與圓O相切于點(diǎn)A,∠ACB的平分線分別交AB,AE于點(diǎn)D,F(xiàn),則∠ADF
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•越秀區(qū)模擬)(《坐標(biāo)系與參數(shù)方程》選做題)在以O(shè)為極點(diǎn)的極坐標(biāo)系中,直線l的極坐標(biāo)方程是ρcosθ+ρsinθ=2,直線l與極軸相交于點(diǎn)M,以O(shè)M為直徑的圓的極坐標(biāo)方程是
ρ=2cosθ
ρ=2cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=acosφ
y=sinφ
(1<a<6,φ
為參數(shù)).在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為P=6cosφ.射線l的極坐標(biāo)方程為θ=α,l與C1的交點(diǎn)為A,l與C2除極點(diǎn)外一個(gè)交點(diǎn)為B.當(dāng)α=0時(shí),|AB|=4.
(Ⅰ)求C1,C2直角坐標(biāo)方程;
(Ⅱ)設(shè)C1與y軸正半軸交點(diǎn)為D,當(dāng)α=
π
4
時(shí),求直線BD的參數(shù)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案