已知?jiǎng)狱c(diǎn)P到直線l:x=-的距離d1,是到定點(diǎn)F(-)的距離d2倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y的取值范圍.
【答案】分析:(1)設(shè)P(x,y),則,由題設(shè)知,由此能求出動(dòng)點(diǎn)P的軌跡方程.
(2)將y=k(x+1)(k≠0)代入,消去y,得(1+4k2)x2+8k2x+4k2-4=0,設(shè)A(x1,y1),B(x2,y2),則,,弦AB的中點(diǎn)為,中垂線n的方程為,由此能求出y的取值范圍.
解答:解:(1)設(shè)P(x,y),則
由題設(shè)知,
平方整理可得
(2)將y=k(x+1)(k≠0)代入,
消去y,得(1+4k2)x2+8k2x+4k2-4=0,
設(shè)A(x1,y1),B(x2,y2),則,
,
弦AB的中點(diǎn)為,中垂線n的方程為,
令x=0,可得
,,
,且,
即y的取值范圍是
點(diǎn)評(píng):本題考查直線 和橢圓的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P到直線y=1的距離比它到點(diǎn)F(0,
1
4
)的距離大
3
4

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)若點(diǎn)P的軌跡上不存在兩點(diǎn)關(guān)于直線l:y=m(x-3)對(duì)稱,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P到直線l:x=--
4
3
3
的距離d1,是到定點(diǎn)F(-
3
,0
)的距離d2
2
3
3
倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P到直線l:x=--
4
3
3
的距離d1,是到定點(diǎn)F(-
3
,0
)的距離d2
2
3
3
倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年北京101中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P到直線l:x=-的距離d1,是到定點(diǎn)F(-)的距離d2倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案