【題目】已知橢圓的右焦點為,點在橢圓上.

1求橢圓的方程;

2過點的直線,交橢圓兩點,點在橢圓上,坐標原點恰為的重心,求直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)由題意可得 ,運用勾股定理可得,再由橢圓的定義可得,由 , 的關(guān)系可得,進而得到橢圓方程;(2)顯然直線軸不垂直,設(shè), , ,代入橢圓方程,運用韋達定理和三角形的重心坐標公式可得M的坐標,代入橢圓方程,解方程即可得到所求直線的方程

試題解析:(1)由題意可得,左焦點 ,所以,即,即, ,故橢圓的方程為;

(2)顯然直線軸不垂直,設(shè), , ,將的方程代入,可得,所以的中點 ,由坐標原點恰為的重心,可得 ,由點上,可得,解得(舍),即,故直線的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x),對任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,則(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 和點,動圓經(jīng)過點且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點是曲線軸正半軸的交點,點, 在曲線上,若直線, 的斜率分別是 ,滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)a≠0,函數(shù)f(x)= ,若f(1﹣a)=f(1+a),則a的值為(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù),且,函數(shù)的圖象與直線相切.

(1)求的解析式;

(2)若當時, 恒成立,求實數(shù)的取值范圍;

(3)是否存在區(qū)間,使得在區(qū)間上的值域恰好為?若存在,請求出區(qū)間,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時, (萬元).當年產(chǎn)量不小于80千件時, (萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績實行“”的構(gòu)成模式,第一個“3”是語文、數(shù)學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體,從學生群體中隨機抽取了50名學生進行調(diào)查,他們選考物理,化學,生物的科目數(shù)及人數(shù)統(tǒng)計如下表:

(I)從所調(diào)查的50名學生中任選2名,求他們選考物理、化學、生物科目數(shù)量不相等的概率;

(II)從所調(diào)查的50名學生中任選2名,記表示這2名學生選考物理、化學、生物的科目數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學期望;

(III)將頻率視為概率,現(xiàn)從學生群體中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數(shù)記作,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下圖中,四邊形 ABCD是等腰梯形, , , M、交EF于點N, , ,現(xiàn)將梯形ABCD沿EF折起,記折起后CD、且使,如圖示.

(Ⅰ)證明: 平面ABFE;,

(Ⅱ)若圖6中, ,求點M到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在四棱錐中,底面是矩形,且,平面、分別是線段的中點

1證明:

2在線段上是否存在點,使得平面,若存在,確定的位置;若不存在,說明理由

3與平面所成的角為,求二面角的余弦值

查看答案和解析>>

同步練習冊答案