【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點(diǎn),圓心在線段上.
(1)當(dāng)為何值時(shí),點(diǎn)恰好在路面中線上?
(2)記圓心在路面上的射影為,且在線段上,求的最大值.
【答案】(1)當(dāng)為時(shí),點(diǎn)在路面中線上;(2)
【解析】
(1)以O(shè)為原點(diǎn),以O(shè)A所在直線為y軸建立平面直角坐標(biāo)系,求出PQ的方程,設(shè)C(a,b),根據(jù)CA=CP=r列方程組可得出a,b的值,從而求出r的值;
(2)用a表示出直線PQ的斜率,得出PQ的方程,求出Q的坐標(biāo),從而可得出|HQ|關(guān)于a的函數(shù),根據(jù)a的范圍和基本不等式得出|HQ|的最大值.
(1)以O(shè)為原點(diǎn),以O(shè)A所在直線為y軸建立平面直角坐標(biāo)系,則A(0,8),P(2,10),Q(7,0),
∴直線PQ的方程為2x+y﹣14=0.設(shè)C(a,b),則,
兩式相減得:a+b﹣10=0,又2a+b﹣14=0,解得a=4,b=6,
∴.∴當(dāng)時(shí),點(diǎn)Q恰好在路面中線上.
(2)由(1)知a+b﹣10=0,
當(dāng)a=2時(shí),燈罩軸線所在直線方程為x=2,此時(shí)HQ=0.
當(dāng)a≠2時(shí),燈罩軸線所在方程為:y﹣10=(x﹣2),
令y=0可得x=12﹣,即Q(12﹣,0),
∵H在線段OQ上,∴12﹣≥a,解得2≤a≤10.
∴|HQ|=12﹣﹣a=12﹣(+a)≤12﹣=12﹣,
當(dāng)且僅當(dāng)=a即a=時(shí)取等號(hào).∴|HQ|的最大值為(12﹣)m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,.
(Ⅰ)求證:平面面;
(Ⅱ)過的平面交于點(diǎn),若平面把四面體分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(I)求出的值;
(II)求出這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);
(III)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求第2組恰好抽到2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中).對(duì)于不相等的實(shí)數(shù),,設(shè),下列說法正確的是( )
A.對(duì)于任意不相等的實(shí)數(shù),,都有;
B.對(duì)于任意的及任意不相等的實(shí)數(shù),,都有;
C.對(duì)于任意的,存在不相等的實(shí)數(shù),,使得;
D.對(duì)于任意的,存在不相等的實(shí)數(shù),,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),曲線的直角坐標(biāo)方程為,將曲線上的點(diǎn)向下平移1個(gè)單位,然后橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,得到曲線.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線相交于兩點(diǎn),求三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段、、、、分成了五組,其頻率分布直方圖如下圖所示,參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示.
年齡(單位:歲) | |||||
保費(fèi)(單位:元) |
(1)求頻率分布直方圖中實(shí)數(shù)的值,并求出該樣本年齡的中位數(shù);
(2)現(xiàn)分別在年齡段、、、、中各選出人共人進(jìn)行回訪.若從這人中隨機(jī)選出人,求這人所交保費(fèi)之和大于元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì)任意,均有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元).這些數(shù)字的背后,除了是消費(fèi)者買買買的表現(xiàn),更是購(gòu)物車?yán)镏袊?guó)新消費(fèi)的奇跡,為了研究歷年銷售額的變化趨勢(shì),一機(jī)構(gòu)統(tǒng)計(jì)了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)y(單位:十億元),繪制如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號(hào)x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
銷售額y | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根據(jù)以上數(shù)據(jù)繪制散點(diǎn)圖,如圖所示
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為銷售額關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及如表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測(cè)2020年天貓雙十一銷售額;(注:數(shù)據(jù)保留小數(shù)點(diǎn)后一位)
(3)把銷售超過100(十億元)的年份叫“暢銷年”,把銷售額超過200(十億元)的年份叫“狂歡年”,從2010年到2019年這十年的“暢銷年”中任取2個(gè),求至少取到一個(gè)“狂歡年”的概率.
參考數(shù)據(jù):
參考公式:
對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com