分析 根據(jù)A={1,2},B={x|(x2+ax)(x2+ax+2)=0},且m(A,B)=1,可知集合B要么是單元素集合,要么是三元素集合,然后對方程|x2+ax+1|=1的根的個數(shù)進行討論,即可求得a的所有可能值,進而可得結(jié)論.
解答 解:由于(x2+ax)(x2+ax+2)=0等價于
x2+ax=0 ①或x2+ax+2=0 ②,
又由A={1,2},且m(A,B)=1,
∴集合B要么是單元素集合,要么是三元素集合,
1°集合B是單元素集合,則方程①有兩相等實根,②無實數(shù)根,
∴a=0;
2°集合B是三元素集合,則方程①有兩不相等實根,②有兩個相等且異于①的實數(shù)根,
即$\left\{\begin{array}{l}{a≠0}\\{{a}^{2}-8=0}\end{array}\right.$,
解得a=±2$\sqrt{2}$,
綜上所述a=0或a=±2$\sqrt{2}$,
∵a>0,∴a=$2\sqrt{2}$,
故答案為$2\sqrt{2}$.
點評 此題是中檔題.考查元素與集合關(guān)系的判斷,以及學(xué)生的閱讀能力和對新定義的理解與應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 2 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x甲<x乙,m甲>m乙 | B. | x甲<x乙,m甲<m乙 | C. | x甲>x乙,m甲>m乙 | D. | x甲>x乙,m甲<m乙 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com