【題目】已知直線與圓C相交,截得的弦長為.

1)求圓C的方程;

2)過原點(diǎn)O作圓C的兩條切線,與函數(shù)的圖象相交于M、N兩點(diǎn)(異于原點(diǎn)),證明:直線與圓C相切;

3)若函數(shù)圖象上任意三個不同的點(diǎn)PQ、R,且滿足直線都與圓C相切,判斷線與圓C的位置關(guān)系,并加以證明.

【答案】12)證明見解析;(3)直線與圓C相切;證明見解析;

【解析】

1)化圓方程為標(biāo)準(zhǔn)方程,得圓心坐標(biāo)和半徑,求出圓心到直線的距離,用表示出弦長,從而求得,得圓方程;

2)求出過原點(diǎn)的圓的兩條切線方程,然后求得兩條切線與拋物線的交點(diǎn)坐標(biāo)后可得證;

3)設(shè),,由此寫出直線的方程,由直線與圓相切得出的關(guān)系,可得;,然后可證直線也與圓相切.

1)解:圓C,可化為圓,

圓心到直線的距離,

截得的弦長為,

,

,

C的方程為;

2)證明:設(shè)過原點(diǎn)O的切線方程為,即,

圓心到直線的距離,,

設(shè)過原點(diǎn)O的切線方程為,

與函數(shù),聯(lián)立可得,與圓C相切;

3)解:設(shè),,可得

直線的方程為,即為,

同理可得,直線的方程為,

直線的方程為,

直線都與圓C相切,

,,即為,

,即有b,c為方程的兩根,

可得;,

由圓心到直線的距離為,

則直線與圓C相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,解答下列問題:

(1)求輸入的的值分別為時,輸出的的值;

(2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當(dāng)關(guān)于的方程有三個互不相等的實(shí)數(shù)解時,實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若, 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點(diǎn)的概率;

(2)若 都是從區(qū)間上任取的一個數(shù),求成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 ()的一個焦點(diǎn)點(diǎn)為橢圓內(nèi)一點(diǎn),若橢圓上存在一點(diǎn),使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,PA垂直于所在的平面,C是圓周上不同于AB的一動點(diǎn).

1)證明:是直角三角形;

2)若,且當(dāng)直線與平面所成角的正切值為時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司想了解對某產(chǎn)品投入的宣傳費(fèi)用與該產(chǎn)品的營業(yè)額的影響.下面是以往公司對該產(chǎn)品的宣傳費(fèi)用 (單位:萬元)和產(chǎn)品營業(yè)額 (單位:萬元)的統(tǒng)計折線圖.

(Ⅰ)根據(jù)折線圖可以判斷,可用線性回歸模型擬合宣傳費(fèi)用與產(chǎn)品營業(yè)額的關(guān)系,請用相關(guān)系數(shù)加以說明;

(Ⅱ)建立產(chǎn)品營業(yè)額關(guān)于宣傳費(fèi)用的歸方程;

(Ⅲ)若某段時間內(nèi)產(chǎn)品利潤與宣傳費(fèi)和營業(yè)額的關(guān)系為,應(yīng)投入宣傳費(fèi)多少萬元才能使利潤最大,并求最大利潤.

參考數(shù)據(jù): , ,

參考公式:相關(guān)系數(shù), ,

回歸方程中斜率和截距的最小二乘佔(zhàn)計公式分別為, .(計算結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,圓上的動點(diǎn)T滿足:線段TQ的垂直平分線與線段TP相交于點(diǎn)K

求點(diǎn)K的軌跡C的方程;

經(jīng)過點(diǎn)的斜率之積為的兩條直線,分別與曲線C相交于M,N兩點(diǎn),試判斷直線MN是否經(jīng)過定點(diǎn)若是,則求出定點(diǎn)坐標(biāo);若否,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,中心在原點(diǎn)的橢圓C的上焦點(diǎn)為,離心率等于

求橢圓C的方程;

設(shè)過且不垂直于坐標(biāo)軸的動直線l交橢圓CA、B兩點(diǎn),問:線段OF上是否存在一點(diǎn)D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

同步練習(xí)冊答案