4.給出下列四個命題:
①若x>0,則x>sinx恒成立;
②命題“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④命題“若a2+b2=0,則a=0且b=0”的逆否命題是“若a≠0或b≠0,則a2+b2≠0”
正確的是( 。
A.①④B.①②C.②④D.③④

分析 構(gòu)造函數(shù)f(x)=x-sinx,求得判斷其單調(diào)性,可得若x>0,則x>sinx恒成立,則①正確;
寫出特稱命題的否定判斷②錯誤;
由復(fù)合命題的真假判斷及充分必要條件的判定方法說明③錯誤;
寫出原命題的逆否命題說明④正確.

解答 解:①,令f(x)=x-sinx,則f′(x)=1-cosx≥0,∴當(dāng)x>0時,f(x)>f(0)=0,即x>sinx恒成立,故①正確;
②,命題“?x>0,x-lnx>0”的否定是“?x0>0,x0-lnx0≤0”,故②錯誤;
③,命題p∨q為真,p、q中至少一個為真,但不一定p∧q為真,反之,p∧q為真,則p、q均為真,有p∨q為真,
∴“命題p∨q為真”是“命題p∧q為真”的必要不充分條件,故③錯誤;
④,命題“若a2+b2=0,則a=0且b=0”的逆否命題是“若a≠0或b≠0,則a2+b2≠0”,故④正確.
∴正確的命題是①④.
故選:A.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查了命題的否定與逆否命題,考查充分必要條件的判定方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{5}{3}$,則雙曲線C的漸近線方程為(  )
A.$y=±\frac{3}{4}x$B.$y=±\frac{4}{3}x$C.$y=±\frac{{\sqrt{6}}}{3}x$D.$y=±\frac{{\sqrt{6}}}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知P為橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$上任意一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓上兩個焦點(diǎn),試確定點(diǎn)P的位置,使得∠F1PF2最大,并說明理由;并求出此時點(diǎn)P的坐標(biāo)以及∠F1PF2的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)數(shù)為f′(x)=2x+1,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<$\frac{m}{16}$對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=ln(x2+1)-e-|x|(e為自然對數(shù)的底數(shù)),則不等式f(2x+1)>f(x)的解集是(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.$(-1,-\frac{1}{3})$D.$(-∞,-1)∪(-\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,以原點(diǎn)為O極點(diǎn),以x軸正半軸為極軸,圓C的極坐標(biāo)方程為$ρ=4\sqrt{2}sin(\frac{3π}{4}-θ)$
(1)將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點(diǎn)P(0,2)作斜率為$\sqrt{3}$直線l與圓C交于A,B兩點(diǎn),試求$|{\frac{1}{|PA|}-\frac{1}{|PB|}}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}各項(xiàng)都為正數(shù),且a1=e,lnan+1-lnan=1(n∈N*
(1)求數(shù)列{lnan}的通項(xiàng)公式;
(2)令bn=$\frac{1}{ln{a}_{n+1}•ln{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=$\frac{n+c}{n+1}$(c∈R,n=1,2,3,…),且S1,$\frac{{S}_{2}}{2}$,$\frac{{S}_{3}}{3}$成等差數(shù)列.
(1)求c的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R.
(1)當(dāng)a=-1時,求f(x)的單調(diào)區(qū)間,
(2)若函數(shù)f(x)在(2,+∞)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊答案