如圖的幾何體中,平面,平面,△為等邊三角形,的中點(diǎn).

(1)求證:平面;
(2)求證:平面平面.
證明見解析.

試題分析:(1)要證線面平行,關(guān)鍵是在平面內(nèi)找一條與待證直線平行的直線,本題中,由于是中點(diǎn),故很容易讓人聯(lián)想到取另一中點(diǎn),這里我們?nèi)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031632149414.png" style="vertical-align:middle;" />中點(diǎn),則,,故是平行四邊形,從而有,平行線找到了,結(jié)論得證;(2)要證面垂直,就是要證線面垂直,關(guān)鍵是找哪個(gè)平面內(nèi)的直線,同樣本題里由于是等邊三角形,故,從而很快得到結(jié)論平面,而(1)中有,則有平面,這就是我們要的平面的垂線,由此就證得了面面垂直.
試題解析:(1)證明:取的中點(diǎn),連結(jié)
的中點(diǎn),∴
平面,平面
,∴. 又,∴
∴四邊形為平行四邊形,則
平面平面, ∴平面.    7分
(2)證明:∵為等邊三角形,的中點(diǎn),∴
平面,,∴
,∴
平面
平面, ∴平面平面.      14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,矩形中,,,、分別為邊上的點(diǎn),且,,將沿折起至位置(如圖2所示),連結(jié)、、,其中.

(Ⅰ)求證:平面
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,,,°,平面平面,分別為、中點(diǎn).

(1)求證:∥平面;
(2)求證:;
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC; (2)求證:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體中,已知是棱的中點(diǎn).

求證:(1)平面,
(2)直線∥平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,

(Ⅰ)求證:
(Ⅱ)設(shè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分別是線段PA、PD、CD、BC的中點(diǎn).

(I)求證:BC∥平面EFG;
(II)求證:DH平面AEG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是兩個(gè)不同的平面,是一條直線,則下列命題正確的是(   )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a,b,c是三條不同的直線,是三個(gè)不同的平面,上述命題中真命題的是
A.若a⊥c,b⊥c,則a∥b或a⊥b
B.若,,則;
C.若a,b,c,a⊥b, a⊥c,則;
D.若a⊥, b,a∥b,則

查看答案和解析>>

同步練習(xí)冊(cè)答案