點(m,n)在曲線F(x,y)=0上,那么曲線F(m,n)+F(y,x)=0與曲線F(x,y)=0


  1. A.
    重合
  2. B.
    關于直線y=x對稱
  3. C.
    關于y軸對稱
  4. D.
    關于x軸對稱
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P是圓O:x2+y2=3上動點,以點P為切點的切線與x軸相交于點Q,直線OP與直線x=1相交于點N,若動點M滿足:
NM
OQ
QM
OQ
=0
,記動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若過點F(2,0)的動直線與曲線C相交于不在坐標軸上的兩點A,B,設
AF
FB
,問在x軸上是否存在定點E,使得
OF
⊥(
EA
EB
)
?若存在,求出點E的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g1(x)=lnx,g2(x)=
12
ax2+(1-a)x(a∈R且a≠0).
(1)設f(x)=g1(x)-g2(x),求函數(shù)f(x)的單調區(qū)間;
(2)設函數(shù)g1(x)的圖象曲線C1與函數(shù)g2(x)的圖象c2交于的不同兩點A、B,過線段AB的中點作x軸的垂線分別交C1、C2于點M、N.證明:C1在M處的切線與C2在N處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊二模)已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左頂點為A,右焦點為F,且過點(1,
3
2
),橢圓C的焦點與曲線2
x
2
 
-2
y
2
 
=1
的焦點重合.
(1)求橢圓C的方程;
(2)過點F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點,點M、N的縱坐標分別為m、n.請問以線段MN為直徑的圓是否經(jīng)過x軸上的定點?若存在,求出定點的坐標,并證明你的結論;若不存在,請說明理由.
(3)在(2)問的條件下,求以線段MN為直徑的圓的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=lnx,   g(x)=
1
2
ax2+2x

(1)若曲線y=f(x)-g(x)在x=1與x=
1
2
處的切線相互平行,求a的值及切線斜率.
(2)若函數(shù)y=f(x)-g(x)在區(qū)間(
1
3
,1)
上單調遞減,求a的取值范圍.
(3)設函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交與P、Q兩點,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.

查看答案和解析>>

同步練習冊答案