函數(shù)f(x)=ax3+bx(a≠0)圖象在點(diǎn)(1,f(1))處的切線與直線6x+y+7=0平行,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求a、b的值;
(2)討論方程f(x)=m解的情況(相同根算一根).
(1)∵f′(x)=3ax2+b的最小值為-12
∴b=-12,且a>0
又直線6x+y+7=0的斜率為-6
∵函數(shù)f(x)=ax3+bx(a≠0)圖象在點(diǎn)(1,f(1))處的切線與直線6x+y+7=0平行
∴f'(1)=3a+b=-6
∴a=2
∴a=2,b=-12
(2)由(1)知f(x)=2x3-12x,f′(x)=6x2-12=6(x+
2
)(x-
2
)
,列表如下:
x (-∞,-
2
-
2
(-
2
,
2
)
2
(
2
,+∞)
f′ + 0 - 0 +
f(x) 極大值 極小值
所以,函數(shù)f(x)的單調(diào)增區(qū)間是(-∞,-
2
)和(
2
,+∞)

∴f(x)在x=-
2
時取得極大值為f(-
2
)=8
2
,f(x)在x=
2
時取得極小值為f(
2
)=-8
2

∴當(dāng)m>8
2
m<-8
2
時,方程有一根;
當(dāng)m=8
2
m=-8
2
時,方程有兩個根;
當(dāng)-8
2
<m<8
2
時,方程有三個根
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′.
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π12
)=1
;
③若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g′(2010)=2009!.
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點(diǎn)”的充要條件.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知函數(shù)f(x)=ax3-6ax2+b(x∈[-1,2])的最大值為3,最小值為-29,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
 
;
(2)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點(diǎn)”的結(jié)論
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3-2x2+a2x在x=1處有極小值,則實(shí)數(shù)a等于
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下表為函數(shù)f(x)=ax3+cx+d部分自變量取值及其對應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時,取值精確到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì):
(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)在[0.55,0.6]上是否存在零點(diǎn),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案