【題目】已知函數(shù)f(x)=ax3+bx2﹣3x在x=±1處取得極值.
(1)討論f(1)和f(﹣1)是函數(shù)f(x)的極大值還是極小值;
(2)過點(diǎn)A(0,16)作曲線y=f(x)的切線,求此切線方程.
【答案】
(1)解:f'(x)=3ax2+2bx﹣3,依
題意,f'(1)=f'(﹣1)=0,
即
解得a=1,b=0.
∴f(x)=x3﹣3x,f'(x)=3x2﹣3=3(x+1)(x﹣1).
令f'(x)=0,得x=﹣1,x=1.
若x∈(﹣∞,﹣1)∪(1,+∞),
則f'(x)>0,
故f(x)在(﹣∞,﹣1)上是增函數(shù),f(x)在(1,+∞)上是增函數(shù).
若x∈(﹣1,1),
則f'(x)<0,故f(x)在(﹣1,1)上是減函數(shù).
所以,f(﹣1)=2是極大值;f(1)=﹣2是極小值.
(2)解:曲線方程為y=x3﹣3x,點(diǎn)A(0,16)不在曲線上.
設(shè)切點(diǎn)為M(x0,y0),
則點(diǎn)M的坐標(biāo)滿足y0=x03﹣3x0.
因f'(x0)=3(x02﹣1),
故切線的方程為y﹣y0=3(x02﹣1)(x﹣x0)
注意到點(diǎn)A(0,16)在切線上,有16﹣(x03﹣3x0)=3(x02﹣1)(0﹣x0)
化簡得x03=﹣8,
解得x0=﹣2.
所以,切點(diǎn)為M(﹣2,﹣2),切線方程為9x﹣y+16=0
【解析】(1)求出f'(x),因?yàn)楹瘮?shù)在x=±1處取得極值,即得到f'(1)=f'(﹣1)=0,代入求出a與b得到函數(shù)解析式,然后討論利用x的取值范圍討論函數(shù)的增減性,得到f(1)和f(﹣1)分別是函數(shù)f(x)的極小值和極大值;(2)先判斷點(diǎn)A(0,16)不在曲線上,設(shè)切點(diǎn)為M(x0 , y0),分別代入導(dǎo)函數(shù)和函數(shù)中寫出切線方程,因?yàn)锳點(diǎn)在切線上,把A坐標(biāo)代入求出切點(diǎn)坐標(biāo)即可求出切線方程.
【考點(diǎn)精析】利用函數(shù)的極值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量ξ的分布列為
ξ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 |
P |
若P(ξ2>x)= ,則實(shí)數(shù)x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從0,1,2,3,4這五個(gè)數(shù)中任選三個(gè)不同的數(shù)組成一個(gè)三位數(shù),記X為所組成的三位數(shù)各位數(shù)字之和.
(1)求X是奇數(shù)的概率;
(2)求X的概率分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集具有性質(zhì)對(duì)任意的,使得成立.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(2)求證: ;
(2)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c滿足f(2﹣x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),則log4m﹣ n的值是( )
A.小于1
B.等于1
C.大于1
D.由b的符號(hào)確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣4<x<1},B={x|( )x≥2}.
(1)求A∩B,A∪B;
(2)設(shè)函數(shù)f(x)= 的定義域?yàn)镃,求(RA)∩C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技公司生產(chǎn)一種手機(jī)加密芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于為合格品,小于為次品.現(xiàn)隨機(jī)抽取這種芯片共件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:
測(cè)試指標(biāo) | |||||
芯片數(shù)量(件) |
已知生產(chǎn)一件芯片,若是合格品可盈利元,若是次品則虧損元.
(Ⅰ)試估計(jì)生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)件芯片所獲得的利潤不少于元的概率.
(Ⅱ)記為生產(chǎn)件芯片所得的總利潤,求隨機(jī)變量的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),記為的導(dǎo)函數(shù).
(1)若曲線在點(diǎn)處的切線垂直于直線,求的值;
(2)討論的解的個(gè)數(shù);
(3)證明:對(duì)任意的,恒有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com