【題目】在△ABC中, , .
(1)設(shè),若f(A)=0,求角A的值;
(2)若對(duì)任意的實(shí)數(shù)t,恒有,求△ABC面積的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用平面向量的數(shù)量積公式、二倍角公式的逆用和配角公式化簡(jiǎn)函數(shù)表達(dá)式,再通過(guò)解三角方程進(jìn)行求解;(2)利用平面向量的模長(zhǎng)公式進(jìn)行化簡(jiǎn),利用平面向量的垂直得到不等關(guān)系,再利用三角形的面積公式進(jìn)行求解.
試題解析:(1)f(x)=·=-sin2x+sin xcos x=-×+=sin-.
∵f(A)=0,∴sin=,
又2A+∈,∴2A+=,∴A=.
(2)由|-t|≥||,得|+(1-t) |≥||,
則||2+2(1-t)·+(1-t)2||2≥||2,
故對(duì)任意的實(shí)數(shù)t,恒有2(1-t)·+(1-t)2||2≥0,故·=0,即BC⊥AC.
∵||=≤2,||=1,∴BC=≤,
∴△ABC的面積S=BC·AC≤,∴△ABC面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+3|-|2x-a|,a∈R.
(1)若不等式f(x)≤-5的解集非空,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 (a>b>0)的離心率為.
(Ⅰ)若原點(diǎn)到直線(xiàn)x+y-b=0的距離為,求橢圓的方程;
(Ⅱ)設(shè)過(guò)橢圓的右焦點(diǎn)且傾斜角為45°的直線(xiàn)l和橢圓交于A,B兩點(diǎn),對(duì)于橢圓上任意一點(diǎn)M,總存在實(shí)數(shù)λ、μ,使等式成立,求λ2+μ2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)零點(diǎn),求的取值范圍;
(2)在(1)的條件下,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為(t為參數(shù)).
(1)寫(xiě)出直線(xiàn)l的普通方程與曲線(xiàn)C的直角坐標(biāo)方程;
(2)設(shè)曲線(xiàn)C經(jīng)過(guò)伸縮變換得到曲線(xiàn),設(shè)M(x,y)為上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高三文科班學(xué)生參加了數(shù)學(xué)與地理水平測(cè)試,學(xué)校從測(cè)試合格的學(xué)生中隨機(jī)抽取100人的成績(jī)進(jìn)行統(tǒng)計(jì)分析.抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?/span>
成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí),橫向、縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?0+18+4=42人.
(1)若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率為30%,求a,b的值;
(2)若樣本中,求在地理成績(jī)及格的學(xué)生中,數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856263)
已知拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)與x軸交于點(diǎn)N,過(guò)點(diǎn)N作圓M:(x-2)2+y2=1的兩條切線(xiàn),切點(diǎn)為P、Q,且|PQ|=.
(Ⅰ)求拋物線(xiàn)的方程;
(Ⅱ)過(guò)拋物線(xiàn)的焦點(diǎn)F作斜率為k1的直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連接AM,BM并延長(zhǎng)分別交拋物線(xiàn)于C、D兩點(diǎn),設(shè)直線(xiàn)CD的斜率為k2,問(wèn)是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年1月,某國(guó)宣布成功進(jìn)行氫彈試驗(yàn)后,A,B,C,D四國(guó)領(lǐng)導(dǎo)人及聯(lián)合國(guó)主席紛紛表示譴責(zé),就此,某電視臺(tái)特別邀請(qǐng)一軍事專(zhuān)家對(duì)這一事件進(jìn)行評(píng)論,若該軍事專(zhuān)家計(jì)劃從A,B,C,D四國(guó)及聯(lián)合國(guó)主席這5個(gè)領(lǐng)導(dǎo)人中任選2人的發(fā)言態(tài)度進(jìn)行評(píng)論,那么,他評(píng)論的這2人中至少包括A、B一國(guó)領(lǐng)導(dǎo)人的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)選修4-2:矩陣與變換
求矩陣的特征值和特征向量.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,圓的參數(shù)方程(是參數(shù)),若圓與圓相切,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com