在直角坐標系xOy中,以O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρcos(θ-)=1,M,N分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標方程,并求M,N的極坐標.
(2)設MN的中點為P,求直線OP的極坐標方程.
(1) x+y=1   M(2,0)   N(,)   (2) θ=(ρ∈R)
(1)由ρcos(θ-)=1得
ρ(cosθ+sinθ)=1.
從而C的直角坐標方程為x+y=1.
即x+y=2.
當θ=0時,ρ=2,所以M(2,0);
當θ=時,ρ=,所以N(,).
(2)M點的直角坐標為(2,0),N點的直角坐標為(0,),所以P點的直角坐標為(1,),則P點的極坐標為(,).
所以直線OP的極坐標方程為θ=(ρ∈R).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合,且兩坐標系有相同的長度單位,圓C的參數(shù)方程為為參數(shù)),點Q的極坐標為。
(1)化圓C的參數(shù)方程為極坐標方程;
(2)直線過點Q且與圓C交于M,N兩點,求當弦MN的長度為最小時,直線的直角坐標方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求圓被直線(是參數(shù))截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線的極坐標方程為,則極點到這條直線的距離是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線為參數(shù)且)與曲線
 (是參數(shù)且),則直線與曲線的交點坐標為       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α與C1,C2各有一個交點.當α=0時,這兩個交點間的距離為2,當α=時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值.
(2)設當α=時,l與C1,C2的交點分別為A1,B1,當α=-時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知☉O1和☉O2的極坐標方程分別是ρ=2cosθ和ρ=2asinθ(a是非零常數(shù)).
(1)將兩圓的極坐標方程化為直角坐標方程.
(2)若兩圓的圓心距為,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在極坐標系中,圓ρ=2cos θ的垂直于極軸的兩條切線方程分別為(  )
A.θ=0(ρ∈R)和ρcos θ=2
B.θ(ρ∈R)和ρcos θ=2
C.θ(ρ∈R)和ρcos θ=1
D.θ=0(ρ∈R)和ρcos θ=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C的極坐標方程是ρ=2sin θ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)將曲線C的極坐標方程化為直角坐標方程;
(2)設直線lx軸的交點是MN是曲線C上一動點,求MN的最大值.

查看答案和解析>>

同步練習冊答案