12.已知m,n為兩條不同的直線,α,β為兩個(gè)不重合的平面,給出下列命題:
①若m⊥α,n⊥α,則m∥n;
②若m⊥α,m⊥n,則n∥α;
③若α⊥β,m∥α,則m⊥β;
④若m⊥α,m∥β,則α⊥β;
其中正確命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

分析 利用空間線面位置關(guān)系的判定定理及性質(zhì)進(jìn)行判斷或舉出反例說明.

解答 解:對(duì)于①,由線面垂直的性質(zhì)“垂直于同一個(gè)平面的兩條直線平行“可知①正確;
對(duì)于②,若n?α,則當(dāng)m⊥α?xí)r,m⊥n,但顯然n與α不平行,故②錯(cuò)誤;
對(duì)于③,設(shè)α∩β=a,m?β,且m∥a,則m∥α,但m與β不垂直,故③錯(cuò)誤;
對(duì)于④,過m作平面γ∩β=b,∵m∥β,∴m∥b,
∵m⊥α,∴b⊥α,
又b?β,∴α⊥β.故④正確.
故選:C.

點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系的判定與性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1.
(1)求直線l的直角坐標(biāo)方程;
(2)求直線l被曲線C:$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α為參數(shù))所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額的數(shù)據(jù)如表:
推銷員編號(hào)12345
工作年限x(年)35679
推銷金額y(萬元)23345
(1)求年推銷金額y關(guān)于工作年限x的線性回歸方程;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若第6名推銷員的工作年限是11年,試估計(jì)他的年推銷金額.
【參考數(shù)據(jù)$\sum_{i=1}^{5}$xiyi=112,$\sum_{i=1}^{5}$xi2=200,
參考公式:線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x},\overline{y}$為樣本平均數(shù)】

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(α)=$\frac{sin(π+α)sin(α+\frac{π}{2})}{cos(α-\frac{π}{2})}$.
(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α+$\frac{π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題

閱讀下列有關(guān)光線的入射與反射的兩個(gè)事實(shí)現(xiàn)象,現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角與反射角相等(如圖1);現(xiàn)象(2):光線從橢圓的一個(gè)焦點(diǎn)出發(fā)經(jīng)橢圓反射后通過另一個(gè)焦點(diǎn)(如圖2).試結(jié)合上述事實(shí)現(xiàn)象完成下列問題:

(1)有一橢圓型臺(tái)球桌,長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)為.將一放置于焦點(diǎn)處的桌球擊出,經(jīng)過球桌邊緣的反射(假設(shè)球的反射完全符合現(xiàn)象(2))后第一次返回到該焦點(diǎn)時(shí)所經(jīng)過的路程記為,求的值(用表示);

(2)結(jié)論:橢圓上任一點(diǎn)處的切線的方程為.記橢圓的方程為

①過橢圓的右準(zhǔn)線上任一點(diǎn)向橢圓引切線,切點(diǎn)分別為,求證:直線恒過一定點(diǎn);

②設(shè)點(diǎn)為橢圓上位于第一象限內(nèi)的動(dòng)點(diǎn),為橢圓的左右焦點(diǎn),點(diǎn)的內(nèi)心,直線軸相交于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)為定義在R上的偶函數(shù),當(dāng)x>0時(shí),xf′(x)+f(x)>0,且f(1)=0,則不等式lgx•f(lgx)<0的解集為(0,$\frac{1}{10}$)∪(1,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.卵形線是常見曲線的一種,分笛卡爾卵形線和卡西尼卵形線,卡西尼卵形線是平面內(nèi)與兩個(gè)定點(diǎn)(叫做焦點(diǎn))距離之積等于常數(shù)的點(diǎn)的軌跡.某同學(xué)類比橢圓與雙曲線對(duì)卡西尼卵形線進(jìn)行了相關(guān)性質(zhì)的探究,設(shè)焦點(diǎn)F1(-c,0),F(xiàn)2(c,0)是平面內(nèi)兩個(gè)定點(diǎn),|PF1|•|PF2|=a2(a是定長(zhǎng)),得出卡西尼卵形線的相關(guān)結(jié)論:
①當(dāng)a=0,c=1時(shí),次軌跡為兩個(gè)點(diǎn)F1(-1,0),F(xiàn)2(1,0);
②若a=c,則曲線過原點(diǎn);
③若0<a<c,則曲線不存在;
④既是軸對(duì)稱也是中心對(duì)稱圖形.
其中正確命題的序號(hào)是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一列數(shù)據(jù)分別為1,2,3,4,5,則方差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線經(jīng)過點(diǎn)P(-1,2),傾斜角α=$\frac{3π}{4}$.
(1)寫出直線的參數(shù)方程;
(2)設(shè)l與拋物線y=x2相交于A、B兩點(diǎn),求線段AB的長(zhǎng)和點(diǎn)P到A、B兩點(diǎn)的距離之積;
(3)求線段AB中點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案