(2013•薊縣二模)定義一種運(yùn)算a?b=
a,a≤b
b,a>b
,令f(x)=(4+2x-x2)?|x-t|(t為常數(shù)),且x∈[-3,3],則使函數(shù)f(x)最大值為4的t值是(  )
分析:根據(jù)定義,先計(jì)算y=4+2x-x2在x∈[-3,3]上的最大值,然后利用條件函數(shù)f(x)最大值為4,確定t的取值即可.
解答:解:y=4+2x-x2在x∈[-3,3]上的最大值為5,所以由4+2x-x2=4,解得x=2或x=-2.
所以要使函數(shù)f(x)最大值為4,則根據(jù)定義可知,
當(dāng)t<1時(shí),即x=2時(shí),|2-t|=4,此時(shí)解得t=-2.
當(dāng)t>1時(shí),即x=0時(shí),|0-t|=4,此時(shí)解得t=4.
故t=-2或4.
故選C.
點(diǎn)評(píng):本題主要考查新定義的理解和應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,考查學(xué)生的分析能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•薊縣二模)在正項(xiàng)等比數(shù)列{an}中,a2a4=4,S3=14,數(shù)列{bn}滿足bn=log2an,則數(shù)列{bn}的前6項(xiàng)和是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•薊縣二模)設(shè)f(x)=2x-2-x.若當(dāng)θ∈[-
π
2
,0)
時(shí),f(m-
1
cosθ-1
)+f(m2-3)>0
恒成立,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•薊縣二模)命題:“若 xy=0,則 x=0或 y=0”的逆否命題為:
若 x≠0且 y≠0 則 xy≠0
若 x≠0且 y≠0 則 xy≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•薊縣二模)下列命題中,正確命題的個(gè)數(shù)為( 。
①若xy=0,則x=0或y=0”的逆否命題為“若x≠0且y≠0,則xy≠0;
②函數(shù)f(x)=ex+x-2的零點(diǎn)所在區(qū)間是(1,2);
③x=2是x2-5x+6=0的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•薊縣二模)如果執(zhí)行如面的程序框圖,那么輸出的S=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案