16.已知△ABC中,角$B,\frac{3}{2}C,A$成等差數(shù)列,且△ABC的面積為$1+\sqrt{2}$,則AB邊的最小值是2.

分析 由已知,利用等差數(shù)列的性質(zhì),三角形內(nèi)角和定理可求C的值,利用三角形面積公式可求ab的值,進(jìn)而利用余弦定理,基本不等式可求AB邊的最小值.

解答 解:∵$B,\frac{3}{2}C,A$成等差數(shù)列,
∴A+B=3C,
又∵A+b+C=π,
∴C=$\frac{π}{4}$,
∴由S△ABC=$\frac{1}{2}$absinC=1+$\sqrt{2}$,得ab=2(2+$\sqrt{2}$),
∵c2=a2+b2-2abcosC=a2+b2-$\sqrt{2}$ab,及a2+b2≥2ab,
∴c2≥(2-$\sqrt{2}$)ab=4,解得:c≥2,
∴c的最小值為2.
故答案為:2.

點評 本題主要考查了等差數(shù)列的性質(zhì),三角形內(nèi)角和定理,三角形面積公式,余弦定理,基本不等式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程log2(x+2)=$\sqrt{-x}$的實數(shù)解的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下面四個推理,不屬于演繹推理的是( 。
A.因為函數(shù)y=sinx(x∈R)的值域為[-1,1],2x-1∈R,所以y=sin(2x-1)(x∈R)的值域也為[-1,1]
B.昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿
C.在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c則a∥c,將此結(jié)論放到空間中也是如此
D.如果一個人在墻上寫字的位置與他的視線平行,那么,墻上字跡離地的高度大約是他的身高,兇手在墻上寫字的位置與他的視線平行,福爾摩斯量得墻壁上的字跡距地面六尺多,于是,他得出了兇手身高六尺多的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,B=$\frac{π}{3}$,sinA+$\sqrt{3}$cosA=2,則b=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,則直線的傾斜角為( 。
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$-\frac{π}{3}$或$\frac{π}{3}$C.$-\frac{π}{6}$或$\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.24B.$\frac{70}{3}$C.20D.$\frac{68}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在五棱錐F-ABCDE中,平面AEF⊥平面ABCDE,AF=EF=1,AB=DE=2,BC=CD=3,且∠AFE=∠ABC=∠BCD=∠CDE=90°.
(1)已知點G在線段FD上,確定G的位置,使得AG∥平面BCF;
(2)點M,N分別在線段DE,BC上,若沿直線MN將四邊形MNCD向上翻折,D與F恰好重合,求三棱錐A-BMF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等比數(shù)列{an}的前n項和為Sn,公比q=$\frac{1}{2}$,a8=1,則S8=255.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若橢圓$\frac{x^2}{{{m^2}+1}}+{y^2}=1$的離心率為$\frac{{\sqrt{3}}}{2}$,則它的長半軸長為4.

查看答案和解析>>

同步練習(xí)冊答案