如圖,游客在景點(diǎn)處下山至處有兩條路徑.一條是從沿直道步行到,另一條是先從沿索道乘纜車到,然后從沿直道步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再?gòu)?img src="http://thumb.zyjl.cn/pic5/tikupic/ff/2/jjjmm1.png" style="vertical-align:middle;" />勻速步行到.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為,索道長(zhǎng)為,經(jīng)測(cè)量,.

(1)求山路的長(zhǎng);
(2)假設(shè)乙先到,為使乙在處等待甲的時(shí)間不超過分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

(1)米;(2)乙步行的速度應(yīng)控制在內(nèi).

解析試題分析:(1)利用同角三角函數(shù)的基本關(guān)系先求出,再利用內(nèi)角和定理以及誘導(dǎo)公式、兩角和的正弦公式求出的值,最終利用正弦定理求出的長(zhǎng)度;(2)利用正弦定理先求出的長(zhǎng)度,然后計(jì)算甲步行至處所需的時(shí)間以及乙從乘纜車到所需的時(shí)間,并設(shè)乙步行的速度為,根據(jù)題中條件列有關(guān)的不等式,求出即可.
試題解析:(1)∵,
、,∴,
,
根據(jù)
所以山路的長(zhǎng)為米;
(2)由正弦定理),
甲共用時(shí)間:,乙索道所用時(shí)間:
設(shè)乙的步行速度為,由題意得
整理得,,
∴為使乙在處等待甲的時(shí)間不超過分鐘,乙步行的速度應(yīng)控制在內(nèi).
考點(diǎn):1.同角三角函數(shù)的基本關(guān)系;2.內(nèi)角和定理;3.兩角和的正弦公式;4.正弦定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角對(duì)邊分別是,且滿足
(Ⅰ)求角的大。唬á颍┤,的面積為;求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,山頂有一座石塔,已知石塔的高度為.

(Ⅰ)若以為觀測(cè)點(diǎn),在塔頂處測(cè)得地面上一點(diǎn)的俯角為,在塔底處測(cè)得處的俯角為,用表示山的高度;
(Ⅱ)若將觀測(cè)點(diǎn)選在地面的直線上,其中是塔頂在地面上的射影.已知石塔高度,當(dāng)觀測(cè)點(diǎn)上滿足時(shí)看的視角(即)最大,求山的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且.
(1)求A的大小;
(2)若,試求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,內(nèi)角對(duì)邊分別為
(1)求的面積;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,角的對(duì)邊分別為,且有.
(1)求角的大;
(2)設(shè)向量,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=cos 2x+2sin x·sin.
(1)求f(x)的最小正周期,最大值以及取得最大值時(shí)x的集合;
(2)若A是銳角三角形△ABC的內(nèi)角,f(A)=0,b=5,a=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足 (a-c)cosB=bcosC.
(1)求角B的大;(2)若b=,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角的對(duì)邊分別為,且滿足
(1)求證:;
(2)若的面積,,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案