已知函數(shù)f(x)=
nx2+2
3x+m
是奇函數(shù),且f(2)=
5
3

(1)求實(shí)數(shù)m和n的值;
(2)判斷函數(shù)f(x)在(-∞,0)上的單調(diào)性.
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的判斷與證明
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由奇函數(shù)的定義,可得m=0,再由f(2),即可得到n;
(2)求出f(x)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0,得增區(qū)間,令導(dǎo)數(shù)小于0,得減區(qū)間.
解答: 解:(1)f(x)為奇函數(shù),則f(-x)=-f(x),
即為
nx2+2
-3x+m
=-
nx2+2
3x+m
,
即有m=-m,即m=0,
又f(2)=
5
3
,則
4n+2
6
=
5
3

解得n=2,
則m=0,n=2;
(2)由于f(x)=
2(x2+1)
3x
=
2
3
(x+
1
x
),
則f′(x)=
2
3
(1-
1
x2
),
由f′(x)>0,可得x>1或x<-1;
f′(x)<0,可得-1<x<0或0<x<1.
則f(x)在(-∞,0)上的單調(diào)性為:在(-∞,-1)上遞增,
(-1,0)上遞減.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的判斷和運(yùn)用,考查函數(shù)的單調(diào)性的判斷,考查定義法和導(dǎo)數(shù)的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是平行四邊形,側(cè)SBC是正三角形,點(diǎn)E是SB的中點(diǎn),且AE⊥平面ABC.
(1)證明:SD∥平面ACE;
(2)若AB⊥AS,BC=2,求點(diǎn)S到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為函數(shù)f(x)=x2+2α
1-x2
2-6α+13,設(shè)t=
1-x2

(1)求t的取值范圍并將f(x)表示為關(guān)于t的函數(shù)g(t);
(2)求函數(shù)g(t)的最大值m,用a表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),P為圓x2+y2=20上的動(dòng)點(diǎn),過P作直線l垂直x軸于點(diǎn)Q,點(diǎn)M滿足
QP
=
2
QM

(1)求動(dòng)點(diǎn)M的軌跡C的方程
(2)若直線l:y=x+m(m≠0)與曲線C交于A,B兩點(diǎn),求三角形OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班60人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
喜愛打籃球不喜愛打籃球合計(jì)
男生24832
女生121628
合計(jì)362460
(Ⅰ)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.
(Ⅱ)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與期望.
下面的臨界值表供參考:
P(X2≥x0)或P(K2≥k00.100.050.0100.005
x0(或k02.7063.8416.6357.879
(參考公式:K2=
n(n11n13-n13n21)2
n1+n2+n+1n+1
,其中n=n11+n12+n21+n12或K2=
n(nd-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題正確的是(  )
A、若α⊥β,m∥α,則m⊥β
B、若m∥α,n∥β,且m∥n,則α∥β
C、若m⊥β,α⊥β,則m∥α
D、若m⊥α,n⊥β,且m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c為其三邊,若a2+b2+ab<c2,則△ABC是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(λ+1,λ,2),
b
=(6,5μ-1,4),若
a
b
,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,命題p:“若公比q>1,則數(shù)列{an}是遞增數(shù)列”,則在其逆命題、否命題和逆否命題中,假命題的個(gè)數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案