已知函數(shù)

(Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若g(x)= +1,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

 

【答案】

(1) 的單調(diào)遞增區(qū)間是(1,+∞),的單調(diào)遞減區(qū)間是(0,1)

(2) a的取值范圍0,+∞)

【解析】

試題分析:解:(Ⅰ)的單調(diào)遞增區(qū)間是(1,+∞),的單調(diào)遞減區(qū)間是(0,1).

(Ⅱ)由題意得,函數(shù)g(x)在1,+∞)上是單調(diào)函數(shù).

若函數(shù)g(x)為1,+∞)上的單調(diào)增函數(shù),則1,+∞)上恒成立,

1,+∞)上恒成立,設(shè),∵1,+∞)上單調(diào)遞減,

,∴a≥0

②若函數(shù)g(x)為1,+∞)上的單調(diào)減函數(shù),則1,+∞)上恒成立,不可能.

∴實(shí)數(shù)a的取值范圍0,+∞)

考點(diǎn):導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)的符號(hào)于函數(shù)單調(diào)性的關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知函數(shù)

   (I)當(dāng)a=18時(shí),求函數(shù)的單調(diào)區(qū)間;(II)求函數(shù)在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

(Ⅰ)當(dāng)a=3時(shí),求fx)的零點(diǎn);

(Ⅱ)求函數(shù)yf (x)在區(qū)間 [ 1,2 ] 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

www.ks5u.co

已知函數(shù)

   (I)當(dāng)a<0時(shí),求函數(shù)的單調(diào)區(qū)間;

   (II)若函數(shù)f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省唐山市高三下學(xué)期第二次模擬考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

已知函數(shù)

   (I)當(dāng)a=1時(shí),求的最小值;

   (II)求證:在區(qū)間(0,1)單調(diào)遞減。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010屆江西省高三年級(jí)數(shù)學(xué)熱身卷(文科) 題型:解答題

(12分)已知函數(shù)

(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)的圖象與直線y=ax只有一個(gè)公共點(diǎn),求實(shí)數(shù)b的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案