在直角坐標(biāo)系xOy中,已知橢圓C(a >0)與x軸的正半軸交于點P.點Q的坐

標(biāo)為(3,3),=6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點Q且斜率為的直線交橢圓CA、B兩點,求△AOB的面積

 

【答案】

(Ⅰ)依題意,點坐標(biāo)為. ···················· 1分

∵ ,點坐標(biāo)為,

∴ ,解得.······················· 3分

∴ 橢圓的方程為.······················ 4分

(Ⅱ)過點且斜率為的直線方程為,

.····························· 5分

方法一:設(shè)點、的坐標(biāo)分別為,

消去并整理得,.············ 6分

∴ ,······················· 7分

∴ ,

∴ .··························· 9分

∵ 直線軸的交點為,

∴ 的面積

.················ 12分

方法二:設(shè)點、的坐標(biāo)分別為、

消去并整理得,····· 6分

∴ ,··············· 7分

∴ ,·· 9分

∵ 點到直線的距離,············· 10分

∴ 的面積.·········· 12分

方法三:設(shè)點、的坐標(biāo)分別為,

 

消去并整理得,····· 6分

∴ ,··············· 8分

∵ 直線軸的交點為,

∴ 的面積

.…12分

方法四:設(shè)點的坐標(biāo)分別為、,

消去并整理得,·············· 6分

∴ ,························ 7分

∴ ,

∵ 點到直線的距離,············ 10分

∴ 的面積

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點,若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點P(2cosx+1,2cos2x+2)和點Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動點P在射線OA上運動,動點Q在y軸的正半軸上運動,△POQ的面積為2
3

(1)求線段PQ中點M的軌跡C的方程;
(2)R1,R2是曲線C上的動點,R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案