【題目】某公司試銷一種成本單價(jià)為500/件的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(jià)(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).

1)由圖象,求函數(shù)的表達(dá)式;

2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)﹣成本總價(jià))為元.試用銷售單價(jià)表示毛利潤(rùn),并求銷售單價(jià)定為多少時(shí),該公司獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

【答案】(1) .(2) ;當(dāng)銷售單價(jià)定為750/價(jià)時(shí),該公司可獲得最大的毛利潤(rùn)為62500元,此時(shí)銷售量是.

【解析】

(1)由曲線與方程的關(guān)系,將點(diǎn)和點(diǎn)分別代入運(yùn)算即可得解;

(2)將公司獲得的毛利潤(rùn)表示為銷售單價(jià)的函數(shù),再由配方法求二次函數(shù)的最值即可得解.

解:(1)把點(diǎn)和點(diǎn)分別代入一次函數(shù),

可得,且,解得,

故一次函數(shù)的表達(dá)式為

(2)∵公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)﹣成本總價(jià))為

故函數(shù)的對(duì)稱軸為,滿足,故當(dāng)時(shí),函數(shù)取得最大值為62500元,

即當(dāng)銷售單價(jià)定為750元/價(jià)時(shí),該公司可獲得最大的毛利潤(rùn)為62500元,此時(shí)銷售量為件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)的定義域?yàn)?/span>,其中為指數(shù)函數(shù)且過點(diǎn)

(1)求函數(shù)的解析式;

(2)判斷函數(shù)的單調(diào)性,并用函數(shù)單調(diào)性定義證明.

(3)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F2、F1是雙曲線 (a>0,b>0)的上、下焦點(diǎn),點(diǎn)F2關(guān)于漸近線的對(duì)稱點(diǎn)恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為(
A.3
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過對(duì)某城市一天內(nèi)單次租用共享自行車的時(shí)間分鐘到鐘的人進(jìn)行統(tǒng)計(jì),按照租車時(shí)間, , , 分組做出頻率分布直方圖,并作出租用時(shí)間和莖葉圖(圖中僅列出了時(shí)間在, 的數(shù)據(jù)).

(1)求的頻率分布直方圖中的;

(2)從租用時(shí)間在分鐘以上(含分鐘)的人數(shù)中隨機(jī)抽取人,設(shè)隨機(jī)變量表示所抽取的人租用時(shí)間在內(nèi)的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:在△ABC中,若AB<BC,則sinC<sinA;命題q:已知a∈R,則“a>1”是“ <1”的必要不充分條件.在命題p∧q,p∨q,(¬p)∨q,(¬p)∧q中,真命題個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.

(1)求a,b的值;

(2)求ABA∪(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“楊輝三角”又稱“賈憲三角”,是因?yàn)橘Z憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)是 ( )

2017 2016 2015 2014……6 5 4 3 2 1

4033 4031 4029…………11 9 7 5 3

8064 8060………………20 16 12 8

16124……………………36 28 20

………………………

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解世界杯期間某地區(qū)電視觀眾對(duì)《戰(zhàn)斗吧足球》節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該節(jié)目時(shí)間的頻率分布直方圖:

(注:頻率分布直方圖中縱軸表示,例如,收看時(shí)間在分鐘的頻率是)

將日均收看該足球節(jié)目時(shí)間不低于40分鐘的觀眾稱為“足球迷”.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否可以認(rèn)為“足球迷”與性別有關(guān)?如果有關(guān),有多大把握?

非足球迷

足球迷

合計(jì)

10

55

合計(jì)

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“足球迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、均值和方差

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函數(shù)f(x)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)對(duì)于函數(shù)f(x)、f1(x)、f2(x),若對(duì)于區(qū)間D上的任意一個(gè)x,都有f1(x)<f(x)<f2(x),則稱函數(shù)f(x)是函數(shù)f1(x)、f2(x)在區(qū)間D上的一個(gè)“分界函數(shù)”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 問是否存在實(shí)數(shù)a,使得f(x)是函數(shù)f1(x)、f2(x)在區(qū)間(1,+∞)上的一個(gè)“分界函數(shù)”?若存在,求實(shí)數(shù)a的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案